Skip to main content
Log in

Dynamic modeling and control of industrial crude terephthalic acid hydropurification process

  • Process Systems Engineering, Process Safety
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Purified terephthalic acid (PTA) is critical to the development of the polyester industry. PTA production consists of p-xylene oxidation reaction and crude terephthalic acid (CTA) hydropurification. The hydropurification process is necessary to eliminate 4-carboxybenzaldehyde (4-CBA), which is a harmful byproduct of the oxidation reaction process. Based on the dynamic model of the hydropurification process, two control systems are studied using Aspen Dynamics. The first system is the ratio control system, in which the mass flows of CTA and deionized water are controlled. The second system is the multivariable predictive control-proportional-integral-derivative cascade control strategy, in which the concentrations of 4-CBA and carbon monoxide are chosen as control variables and the reaction temperature and hydrogen flow are selected as manipulated variables. A detailed dynamic behavior is investigated through simulation. Results show that the developed control strategies exhibit good control performances, thereby providing theoretical guidance for advanced control of industry-scale PTA production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Cincotti, A. Orru and G. Cao, Chem. Eng. Sci., 52, 4205 (1997).

    Article  CAS  Google Scholar 

  2. R. Burri, K.W. Jun, J. S. Yoo, C.W. Lee and S.E. Park, Catal. Lett., 81, 169 (2002).

    Article  Google Scholar 

  3. S. Jhung, Korean Chem. Soc., 23, 503 (2002).

    Article  CAS  Google Scholar 

  4. D. E. James, US Patent, 4,782,181 (1988).

    Google Scholar 

  5. H. Köpnick, M. Schmidt, W. Brügging, J. Rüter and W. Kaminsky, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley (1992).

    Google Scholar 

  6. A. Azarpour and G. Zahedi, Chem. Eng. J., 209, 180 (2012).

    Article  CAS  Google Scholar 

  7. P. M. Brown and A. S. Myerson, AIChE J., 35, 1749 (1989).

    Article  CAS  Google Scholar 

  8. S. Gaines and A. S. Myerson, AIChE Symp. Ser., 78, 42 (1982).

    CAS  Google Scholar 

  9. S. Gaines and A. S. Myerson, Part. Sci. Technol., 1, 409 (1983).

    Article  Google Scholar 

  10. S. Zhang, J. Zhou and W. Yuan, Chem. Reaction Eng. Technol., 24, 54 (2008).

    Google Scholar 

  11. J. Xing, Y. Qiao and W. Zhong, Journal of Hangzhou Dianzi University, 30, 55 (2010).

    Google Scholar 

  12. W. Zhong, Y. Liu, F. Qian, N. Luo, X. Huang and J. Xing, Comput. Appl. Chem., 29, 374 (2012).

    Google Scholar 

  13. P. Raghavendrachar and S. Ramachandran, Ind. Eng. Chem. Res., 31, 453 (1992).

    Article  CAS  Google Scholar 

  14. H.P. Huang, H.Y. Lee and T. K. Gau, Ind. Eng. Chem. Res., 46, 505 (2007).

    Article  CAS  Google Scholar 

  15. H.Y. Lee and H. P. Huang, Ind. Eng. Chem. Res., 47, 3046 (2008).

    Article  CAS  Google Scholar 

  16. F. Qian, L. Tao, W. Sun and W. Du, Ind. Eng. Chem. Res., 51, 3229 (2012).

    Article  CAS  Google Scholar 

  17. S. Li, Ind. Eng. Chem. Res., 48, 6358 (2009).

    Article  CAS  Google Scholar 

  18. X. Huang, W. Zhong, W. Du and F. Qian, Ind. Eng. Chem. Res., 52, 2944 (2013).

    Article  CAS  Google Scholar 

  19. C. Li, Chinese J. Chem. Eng., 19, 89 (2011).

    Article  Google Scholar 

  20. S.W. Sung, J. Lee and I.B. Lee, Process Identification and PID Control, 1st Ed., Wiley (2009).

    Book  Google Scholar 

  21. P. Tatjewski, Advanced Control of Industrial Processes, Structures and Algorithms, 1st Ed., Springer (2007).

    Google Scholar 

  22. J. Richalet, A. Rault, J.L. Testud and J. Papon, Automatica, 14, 413 (1978).

    Article  Google Scholar 

  23. D.W. Clarke, C. Mohtadi and P. S. Tuffs, Automatica, 23, 137 (1987).

    Article  Google Scholar 

  24. W. L. Luyben, AIChE J., 43, 12 (1997).

    Article  Google Scholar 

  25. W. L. Luyben, Ind. Eng. Chem. Res., 49, 6150 (2010).

    Article  CAS  Google Scholar 

  26. W. L. Luyben, Ind. Eng. Chem. Res., 49, 719 (2010).

    Article  CAS  Google Scholar 

  27. J. Zhou, T. Zhang and Z. Sui, Journal of East China University of Science and Technology (Natural Science Edition), 32, 374 (2006).

    CAS  Google Scholar 

  28. J. Zhou, T. Zhang and Z. Sui, Journal of East China University of Science and Technology (Natural Science Edition), 32, 503 (2006).

    CAS  Google Scholar 

  29. B.D. Tyreus and W.L. Luyben, Ind. Eng. Chem. Res., 31, 2625 (1992).

    Article  CAS  Google Scholar 

  30. Aspen Technology, Inc. Aspen DMCplus Reference (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weimin Zhong or Feng Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Zhong, W., Liu, Y. et al. Dynamic modeling and control of industrial crude terephthalic acid hydropurification process. Korean J. Chem. Eng. 32, 597–608 (2015). https://doi.org/10.1007/s11814-014-0207-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0207-z

Keywords

Navigation