Skip to main content
Log in

Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran

  • Catalysis, Reaction Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The potential of 4-hydroxy-2,2,6,6-tetramethyl-piperidine-1-oxyl (4-hydroxy-TEMPO radical) as an oxidant with [bis(acetoxy)-iodo]benzene (BAIB) and acetic acid (CH3COOH) as co-oxidants to convert 5-hydroxymethylfurfural (5-HMF) into 2,5-diformylfuran (2,5-DFF) was investigated. The effects of oxidant/acid dosages, choice of appropriate solvent, reaction temperature and time were determined to maximize the 2,5-DFF yield. Optimally, 66% 2,5-DFF yield was achieved in TEMPO/BAIB/CH3COOH system at 30 °C after 45 min in ethyl acetate. The reaction system is environmentally benign (metal-free) and energy efficient (mild at short reaction period). With scarce reports on 2,5-DFF production, the developed system provides an alternative route for a better access and wider application of this important platform chemical.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Hu, Y. Sun, L. Lin and S. Liu, J. Taiwan Inst. Chem. Eng., 43, 718 (2012).

    Article  CAS  Google Scholar 

  2. J. Ma, W. Yu, M. Wang, X. Jia, F. Lu and J. Xu, Chin. J. Catal., 34, 492 (2013).

    Article  CAS  Google Scholar 

  3. C. H. Ra, G.-T. Jeong, M. K. Shin and S.-K. Kim, Bioresour. Technol., 140, 421 (2013).

    Article  CAS  Google Scholar 

  4. W. R. Yang and A. Sen, ChemSusChem, 3, 597 (2010).

    Article  CAS  Google Scholar 

  5. X. Xiang, L. He, Y. Yang, B. Guo, D. M. Tong and C.W. Hu, Catal. Lett., 141, 735 (2011).

    Article  CAS  Google Scholar 

  6. N. K. Gupta, S. Nishimura, A. Takagaki and K. Ebitani, Green Chem., 13, 824 (2011).

    Article  CAS  Google Scholar 

  7. J.-A. Chun, J.-W. Lee, Y.-B. Yi, S.-S. Hong and C.-H. Chung, Korean J. Chem. Eng., 27, 930 (2010).

    Article  CAS  Google Scholar 

  8. Q. Ren, Y. Huang, H. Ma, F. Wang, J. Gao and J. Xu, Bioresources, 8, 1563 (2013).

    Google Scholar 

  9. J. Ma, Y. Pang, M. Wang, J. Xu, H. Ma and X. Nie, J. Mater. Chem., 22, 3457 (2012).

    Article  CAS  Google Scholar 

  10. K. T. Hopkins, W. D. Wilson, B. C. Bender, D. R. McCurdy, J. E. Hall, R. R. Tidwell, A. Kumar, M. Bajic and D.W. Boykin, J. Med. Chem., 41, 3872 (1998).

    Article  CAS  Google Scholar 

  11. A. S. Benahmedgasmi, P. Frere, M. Jubault, A. Gorgues, J. Cousseau and B. Garrigues, Synth. Met., 56, 1751 (1993).

    Article  CAS  Google Scholar 

  12. J. Ma, M. Wang, Z. Du, C. Chen, J. Gao and J. Xu, Polym. Chem., 3, 2346 (2012).

    Article  CAS  Google Scholar 

  13. D.W. Sheibley, M. A. Manzo and O. D. Gonzalezsanabria, J. Electrochem. Soc., 130, 255 (1983).

    Article  CAS  Google Scholar 

  14. M.D. Poeta, W.A. Schell, C.C. Dykstra, S. Jones, R. R. Tidwell, A. Czarny, M. Bajic, M. Bajic, A. Kumar, D. Boykin and J. R. Perfect, Antimicrob. Agents Chemother., 42, 2495 (1998).

    Google Scholar 

  15. J. Lewkowski, Arkivoc, 2, 17 (2001).

    Google Scholar 

  16. A. S. Amarasekara, D. Green and L. D. Williams, Eur. Polym. J., 45, 595 (2009).

    Article  CAS  Google Scholar 

  17. Y. R. Leshkov, C. J. Barrett and Z.Y. Liu, Nature, 447, 982 (2007).

    Article  Google Scholar 

  18. J. P. Ma, Z. T. Du, J. Xu, Q. H. Chu and Y. Pang, ChemSusChem, 4, 51 (2011).

    Article  CAS  Google Scholar 

  19. A. A. Rosatella, A. P. Simeonov, R. F. M. Frade and C. A. M. Afonso, Green Chem., 13, 754 (2011).

    Article  CAS  Google Scholar 

  20. C. A. Antonyraj, J. Jeong, B. Kim, S. Shin, S. Kim, K.-Y. Lee and J. K. Cho, J. Ind. Eng. Chem., 19, 1056 (2013).

    Article  CAS  Google Scholar 

  21. C. Carlini, P. Patrono, A. M. R. Galletti, G. Sbrana and V. Zima, Appl. Catal. A Gen., 289, 197 (2005).

    Article  CAS  Google Scholar 

  22. O. C. Navarro, A. C. Canos and S. I. Chornet, Top. Catal., 52, 304 (2009).

    Article  CAS  Google Scholar 

  23. T. Stahlberg, E. Eyjolfsdottir, Y.Y. Gorbanev, I. Sadaba and A. Riisager, Catal. Lett., 142, 1089 (2012).

    Article  CAS  Google Scholar 

  24. Y. Shen, S. Zhang, H. Li, Y. Ren and H. Liu, Chem. Eur. J., 16, 7368 (2010).

    Article  CAS  Google Scholar 

  25. C. D. Pina, E. Falletta, L. Prati and M. Rossi, Chem. Soc. Rev., 37, 2077 (2008).

    Article  Google Scholar 

  26. M. Besson and P. Gallezot, Catal. Today, 57, 127 (2000).

    Article  CAS  Google Scholar 

  27. J.W. Reijendam, G. J. Heeres and M. J. Janssen, Tetrahedron, 26, 1291 (1970).

    Article  Google Scholar 

  28. L. Cottier, G. Descotes, J. Lewkowski and R. Skowronski, Pol. J. Chem., 68, 693 (1994).

    CAS  Google Scholar 

  29. L. Cottier, G. Descotes, J. Lewkowski, R. Skowronski and E. Viollet, J. Heterocycl. Chem., 32, 927 (1995).

    Article  CAS  Google Scholar 

  30. L. Cottier, G. Descotes, J. Lewkowski and R. Skowronski, Org. Prep. Proced. Int., 27, 564 (1995).

    Article  CAS  Google Scholar 

  31. A. S. Amarasekara, D. Green and E. McMillan, Catal. Commun., 9, 286 (2008).

    Article  CAS  Google Scholar 

  32. W. Partenheimer and V. V. Grushin, Adv. Synth. Catal., 343, 102 (2001).

    Article  CAS  Google Scholar 

  33. A. E. J. Nooy, A. C. de Besemar and H.V. Bekkum, Synthesis, 10, 1153 (1996).

    Article  Google Scholar 

  34. T. Vogler and A. Studer, Synthesis, 13, 1979 (2008).

    Google Scholar 

  35. L. Tebben and A. Studer, Angew. Chem. Int. Ed., 50, 5034 (2011).

    Article  CAS  Google Scholar 

  36. J. M. Hoover, B. L. Ryland and S. S. Stahl, J. Am. Chem. Soc., 135, 2357 (2013).

    Article  CAS  Google Scholar 

  37. J. C.V. Toorn, G. Kemperman, R. A. Sheldon and I.W. C. E. Arends, J. Org. Chem., 74, 3085 (2009).

    Article  Google Scholar 

  38. H. Tohma and Y. Kita, Adv. Synth. Catal., 346, 111 (2004).

    Article  CAS  Google Scholar 

  39. M. Uyanik and K. Ishihara, Chem. Commun., 2086 (2009).

    Google Scholar 

  40. A. Mico, R. Margarita, L. Parlanti, A. Vescovi and G. Piancatelli, J. Org. Chem., 62, 6974 (1997).

    Article  Google Scholar 

  41. J. B. Epp and T. S. Widlanski, J. Org. Chem., 64, 295 (1999).

    Article  Google Scholar 

  42. M. F. Semmelhack, C. R. Schmid, D. A. Cortes and S. Chou, J. Am. Chem. Soc., 106, 3374 (1984).

    Article  CAS  Google Scholar 

  43. T. M. Hansen, G. J. Florence, P. L. Mas, J. Chen, J.N. Abrams and C. J. Forsyth, Tetrahedron Lett., 44, 57 (2003).

    Article  CAS  Google Scholar 

  44. A. Takagaki, M. Takahashi, S. Nishimura and K. Ebitani, ACS Catal., 1, 1562 (2011).

    Article  CAS  Google Scholar 

  45. C. I. Herrerias, T.Y. Zhang and C. J. Li, Tetrahedron Lett., 47, 13 (2006).

    Article  CAS  Google Scholar 

  46. S. R. Kirumakki, N. Nagaraju and S. Narayanan, Appl. Catal. A Gen., 273, 1 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wook-Jin Chung.

Additional information

The authors contributed equally in this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mittal, N., Nisola, G.M., Malihan, L.B. et al. Metal-free mild oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran. Korean J. Chem. Eng. 31, 1362–1367 (2014). https://doi.org/10.1007/s11814-014-0036-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0036-0

Keywords

Navigation