Skip to main content
Log in

Experimental measurement and modeling of saturated reservoir oil viscosity

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

A novel mathematical-based approach is proposed to develop reliable models for prediction of saturated crude oil viscosity in a wide range of PVT properties. A new soft computing approach, namely least square support vector machine modeling optimized with coupled simulated annealing optimization technique, is proposed. Six models have been developed to predict saturated oil viscosity, which are designed in such a way that could predict saturated oil viscosity with every available PVT parameter. The constructed models are evaluated by carrying out extensive experimental saturated crude oil viscosity data from Iranian oil reservoirs, which were measured using a “Rolling Ball viscometer.” To evaluate the performance and accuracy of these models, statistical and graphical error analyses were used simultaneously. The obtained results demonstrated that the proposed models are more robust, reliable and efficient than existing techniques for prediction of saturated crude oil viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. M. A. Al-Marhoun, J. Pet. Sci. Eng., 42, 209 (2004).

    Article  CAS  Google Scholar 

  2. S. M. Farouq Ali, S., J. Can. Pet. Technol., 35 (1996).

    Google Scholar 

  3. A. Elsharkawy and A. Alikhan, Fuel, 78, 891 (1999).

    Article  CAS  Google Scholar 

  4. Y. Gao and K. Li, Fuel, 95, 431 (2012).

    Article  CAS  Google Scholar 

  5. S. S. Ikiensikimama and O. Ogboja, J. Pet. Sci. Eng., 69, 214 (2009).

    Article  CAS  Google Scholar 

  6. A. Naseri, M. Nikazar and S.A. Mousavi Dehghani, J. Pet. Sci. Eng., 47, 163 (2005).

    Article  CAS  Google Scholar 

  7. A. Hemmati-Sarapardeh, M. Khishvand, A. Naseri and A. H. Mohammadi, Chem. Eng. Sci., 90, 53 (2013).

    Article  CAS  Google Scholar 

  8. A. Hemmati-Sarapardeh, H. Hashemi Kiasari,_N. Alizadeh, S. Mighani and A. Kamari, Application of fast-SAGD in naturally fractured heavy oil reservoirs: A case study, in: The 18th Middle East Oil & Gas Show and Conference, Bahrain (2013).

    Google Scholar 

  9. H. Hashemi-Kiasari, A. Hemmati-Sarapardeh, S. Mighani, A. H. Mohammadi and B. Sedaee-Sola, Fuel., 122, 82 (2014).

    Article  CAS  Google Scholar 

  10. A. Hemmati-Sarapardeh, S. Ayatollahi, M. H. Ghazanfari and M. Masihi, J. Chem. Eng. Data, 59, 61 (2014).

    Article  CAS  Google Scholar 

  11. F. Ahrabi, S. J. Ashcroft and R. B. Shearn, Chem. Eng. Res. Design, 65, 63 (1987).

    CAS  Google Scholar 

  12. D.-H. Xu and A. K. Khurana, A simple and efficient approach for improving the prediction of reservoir fluid viscosity, in: SPE Asia Pacific Oil and Gas Conference, Society of Petroleum Engineers, Inc., Adelaide, Australia (1996).

    Google Scholar 

  13. J. E. Little, Kennedy, H. T, Soc. Pet. Eng. J., 6, 157 (1968).

    Google Scholar 

  14. A. Teja and P. Rice, Ind. Eng. Chem. Fundam., 20, 77 (1981).

    Article  CAS  Google Scholar 

  15. S. E. Johnson, W.Y. Svrcek and A. K. Mehrotra, Ind. Eng. Chem. Res., 26, 2290 (1987).

    Article  CAS  Google Scholar 

  16. S. E. Johnson, W. Y. Svrcek, J. Can. Pet. Technol., 26(5), 60 (1991).

    Google Scholar 

  17. O. S. Isehunwa, O. Olamigoke and A. A. Makinde, A correlation to predict the viscosity of light crude oils, in: Nigeria Annual International Conference and Exhibition, Society of Petroleum Engineers, Abuja, Nigeria (2006).

    Google Scholar 

  18. A. Hemmati-Sarapardeh, A. Shokrollahi, A. Tatar, F. Gharagheizi, A. H. Mohammadi and A. Naseri, Fuel, 116, 39 (2014).

    Article  CAS  Google Scholar 

  19. J.-N. Chew and C. A. Connally, A viscosity correlation for gas-saturated crude oils (1959).

    Google Scholar 

  20. H. D. Beggs and J. R. Robinson, SPE J. Pet. Technol., 27, 1140 (1975).

    Article  Google Scholar 

  21. A. Al-Khafaji, G. Abdul-Majeed and S. Hassoon, J. Pet. Res., 6 (1987).

    Google Scholar 

  22. G. E. J. Petrosky, PVT Correlations for Gulf of Mexico Crude Oils, MSC thesis, University of Sowthwestern Louisiana, Lufayette, Louisiana, USA (1990).

    Google Scholar 

  23. M. S. Hossain, C. Sarica, H.-Q. Zhang, L. Rhyne and K. L. Greenhill, Assessment and development of heavy oil viscosity correlations, in: SPE/PS-CIM/CHOA International Thermal Operations and Heavy Oil Symposium, Calgary, Alberta, Canada (2005).

    Google Scholar 

  24. D. F. Bergman and R. P. Sutton, An update to viscosity correlations for gas-saturated crude oils, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Anaheim, California, USA (2007).

    Google Scholar 

  25. S.A. Khan, M. A. Al-Marhoun, S.O. Duffuaa and S. A. Abu-Khamsin, Viscosity correlations for saudi arabian crude oils, in: Middle East Oil Show, Society of Petroleum Engineers, Bahrain (1987).

    Google Scholar 

  26. R. Labedi, J. Pet. Sci. Eng., 8, 221 (1992).

    Article  CAS  Google Scholar 

  27. J. A. K. Suykens and J. Vandewalle, Neural Process. Lett., 9, 293 (1999).

    Article  Google Scholar 

  28. A. Eslamimanesh, F. Gharagheizi, M. Illbeigi, A. H. Mohammadi, A. Fazlali and D. Richon, Fluid Phase Equilib., 316, 34 (2012).

    Article  CAS  Google Scholar 

  29. A. Fayazi, M. Arabloo, A. Shokrollahi, M. H. Zargari and M. H. Ghazanfari, Ind. Eng. Chem. Res., 53, 945 (2014).

    Article  CAS  Google Scholar 

  30. A. Kamari, A. Khaksar-Manshad, F. Gharagheizi, A. H. Mohammadi and S. Ashoori, Ind. Eng. Chem. Res., 52, 15664 (2013).

    Article  CAS  Google Scholar 

  31. A. Kamari, F. Gharagheizi, A. Bahadori, A. H. Mohammadi and S. Zendehboudi, Fluid Phase Equilib., 366, 117 (2014).

    Article  CAS  Google Scholar 

  32. H. Srinivas, K. Srinivasan and K. Umesh, Adv. Theor. Appl. Mech., 3, 159 (2010).

    Google Scholar 

  33. A. H. Mohammadi, A. Eslamimanesh, D. Richon, F. Gharagheizi, M. Yazdizadeh, J. Javanmardi, H. Hashemi, M. Zarifi and S. Babaee, Ind. Eng. Chem. Res., 51, 1062 (2011).

    Article  Google Scholar 

  34. K. Pelckmans, J. A. K. Suykens, T. Van Gestel,_J. De Brabanter, L. Lukas, B. Hamers, B. De Moor and J. Vandewalle, LS-SVMlab: a matlab/c toolbox for least squares support vector machines, Tutorial, KULeuven-ESAT, Leuven, Belgium (2002).

    Google Scholar 

  35. A. Eslamimanesh, F. Gharagheizi, A. H. Mohammadi and D. Richon, J. Chem. Eng. Data, 56, 3775 (2011).

    Article  CAS  Google Scholar 

  36. H. Liu, X. Yao, R. Zhang, M. Liu, Z. Hu and B. Fan, J. Phys. Chem. B, 109, 20565 (2005).

    Article  CAS  Google Scholar 

  37. A. Hemmati-Sarapardeh, R. Alipour-Yeganeh-Marand, A. Naseri, A. Safiabadi, F. Gharagheizi, P. Ilani-Kashkouli and A. H. Mohammadi, Fluid Phase Equilib., 354, 177 (2013).

    Article  CAS  Google Scholar 

  38. A. Shokrollahi, M. Arabloo, F. Gharagheizi and A.H. Mohammadi, Fuel, 112, 375 (2014).

    Article  Google Scholar 

  39. S. R. Taghanaki, M. Arabloo, A. Chamkalani, M. Amani, M. H. Zargari and M. R. Adelzadeh, Fluid Phase Equilib., 346, 25 (2013).

    Article  Google Scholar 

  40. M.M. Atiqullah and S. Rao, Microelectronics Reliability, 33, 1303 (1993).

    Article  Google Scholar 

  41. V. Fabian, Computers & Mathematics with Applications, 33, 81 (1997).

    Article  Google Scholar 

  42. A. Vasan and K. S. Raju, Applied Soft Computing, 9, 274 (2009).

    Article  Google Scholar 

  43. A. Kamari, A. Hemmati-Sarapardeh, S.-M. Mirabbasi, M. Nikookar and A. H. Mohammadi, Fuel Process. Technol., 116, 209 (2013).

    Article  CAS  Google Scholar 

  44. J. A. K. Suykens, J. Vandewalle and D. E. M. Bart, Int. J. Bifurcation and Chaos, 11, 2133 (2001).

    Article  Google Scholar 

  45. S. Xavier-de-Souza, J.A. K. Suykens, J. Vandewalle and D. Bollé, Coupled simulated annealing, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 40, 320 (2010).

    Article  Google Scholar 

  46. G. Koch, Discovering multi-core: Extending the benefits of Moore’s law, Technology, 1 (2005).

    Google Scholar 

  47. A. Chamkalani, M. Amani, M. A. Kiani and R. Chamkalani, Fluid Phase Equilib., 339, 72 (2013).

    Article  CAS  Google Scholar 

  48. M. Arabloo, M.-A. Amooie, A. Hemmati-Sarapardeh, M.-H. Ghazanfari and A.H. Mohammadi, Fluid Phase Equilib., 363, 121 (2014).

    Article  CAS  Google Scholar 

  49. F. Gharagheizi and R. F. Alamdari, A Molecular-Based Model for Prediction of Solubility of C60 Fullerene in Various Solvents, Fullerenes, Nanotubes, and Carbon Nonstructures, 16, 40 (2008).

    Article  CAS  Google Scholar 

  50. J. Chew and C. Connally, Trans. AIME, 216, 23 (1959).

    Google Scholar 

  51. H. Beggs and J. Robinson, J. Pet. Technol., 27, 1140 (1975).

    Article  Google Scholar 

  52. A. Al-Khafaji, G. Abdul-Majeed and S. Hassoon, J. Pet. Res., 6, 1 (1987).

    Google Scholar 

  53. G. E. J. Petrosky, PVT correlations for gulf of mexico crude oils, MSC Thesis, University of Sowthwestern Louisiana, Lufayette, Louisiana, USA (1990).

    Google Scholar 

  54. M. S. Hossain, C. Sarica, H. Q. Zhang, L. Rhyne and K. Greenhill, Assessment and development of heavy oil viscosity correlations, in: SPE International Thermal Operations and Heavy Oil Symposium, Calgary, Canada (2005).

    Google Scholar 

  55. G. H. Abdul-Majeed, K. K. Clark and N. H. Salman, J. Can. Pet. Technol., 29 (1990).

    Google Scholar 

  56. R. A. Almehaideb, Improved PVT correlations for UAE crude oils, in: Middle East Oil Show and Conference, Bahrain (1997).

    Google Scholar 

  57. B. Dindoruk and P. Christman, PVT properties and viscosity correlations for Gulf of Mexico oils, in: SPE ATCE in New Orleans, LA (2001).

    Google Scholar 

  58. T. Kartoatmodjo and Z. Schmidt, Oil Gas J., 92, 51 (1994).

    Google Scholar 

  59. S. Khan, M. Al-Marhoun, S. Duffuaa and S. Abu-Khamsin, Viscosity correlations for Saudi Arabian crude oils, in: SPE Middle East Oil Show, Manama, Bahrain (1987).

    Google Scholar 

  60. H. Orbey and S. I. Sandler, Can. J. Chem. Eng., 71, 437 (1993).

    Article  CAS  Google Scholar 

  61. R. Sutton and D. Bergman, Undersaturated Oil Viscosity Correlation for Adverse Conditions (2006).

    Google Scholar 

  62. M. Vazquez and H.D. Beggs, SPE J. Pet. Technol., 32, 968 (1980).

    Article  Google Scholar 

  63. Bergman, R. P. Sutton, An update to viscosity correlations for gassaturated crude oils, in: SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Anaheim, California, USA (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmad Ramazani S. A or Amir H. Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmati-Sarapardeh, A., Majidi, SMJ., Mahmoudi, B. et al. Experimental measurement and modeling of saturated reservoir oil viscosity. Korean J. Chem. Eng. 31, 1253–1264 (2014). https://doi.org/10.1007/s11814-014-0033-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-014-0033-3

Keywords

Navigation