Skip to main content
Log in

A catalytic membrane reactor for water-gas shift reaction

  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We conducted the WGS reaction on a catalytic membrane reactor consisting of a WGS catalyst bed, Pt/CeO2 and thin, defect-free, Pd-Cu alloy membranes. The presence of CO and other gases with H2 reduced the H2 permeation through the membrane by more than 50% and the effect of the other gases on the permeation reduction decreased in the following order: CO>CO2>N2. In a catalytic membrane reactor with helium sweep gas, the CO conversion was improved by about 65% compared with the catalyst without any membrane, and the CH4 formed from an undesirable side reaction was significantly reduced. Although the H2 permeation was severely reduced by surface phenomena such as blocking of available H2 dissociation sites by CO, CO2 and steam, the CO conversion was notably improved by the membrane presence. Moreover, the CO conversion was maintained at 98% even after 60 h of reaction and our Pd-Cu-Ni alloy membrane withstood the exposure of CO and the other gases. However, for separation of pure H2, a newly designed, catalyst-membrane system is required with better sealing and the ability to withstand the high operating pressure that drives the H2 permeation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. Wang and R. J. Gorte, Appl. Cat. A: Gen., 247, 157 (2003).

    Article  CAS  Google Scholar 

  2. T. Shido and Y. Iwasawa, J. Catal., 141, 71 (1993).

    Article  CAS  Google Scholar 

  3. O. Goerke, P. Pfeifer and K. Schubert, Appl. Catal. A: Gen., 263, 11 (2004).

    Article  CAS  Google Scholar 

  4. G. Jacobs, U. M. Graham, E. Chenu, P. M. Patterson, A. Dozier and B. H. Davis, J. Catal., 229, 499 (2005).

    Article  CAS  Google Scholar 

  5. R. J. Gorte and S. Zhao, Catal. Today, 104, 18 (2005).

    Article  CAS  Google Scholar 

  6. G. Barbieri, A. Brunetti, G. Tricoli and E. Drioli, J. Power Sources, 182, 160 (2008).

    Article  CAS  Google Scholar 

  7. S. Battersby, M. C. Duke, S. Liu, V. Rudolph and J.C. Diniz da Costa, J. Memb. Sci., 316, 46 (2008).

    Article  CAS  Google Scholar 

  8. T. A. Peters, M. Stange, H. Klette and R. Bredesen, J. Power Sources, 316, 119 (2008).

    CAS  Google Scholar 

  9. A. Brunetti, A. Caravella, G. Barbieri and E. Drioli, J. Memb. Sci., 306, 329 (2007).

    Article  CAS  Google Scholar 

  10. O.U. Iyoha, H 2 production in palladium and palladium-copper membrane reactors at 1,173 K in the presence of H 2 S, Ph.D thesis, University of Pittsburgh (2007).

  11. S.K. Ryi, J. S. Park, S. H. Kim, S.H. Cho, D.W. Kim and K.Y. Um, Sep. Purif. Technol., 50, 82 (2006).

    Article  CAS  Google Scholar 

  12. T. Takeguchi, S. Manabe, R. Kikuchi, K. Eguchi, T. Kanazawa, S. Matsumoto and W. Ueda, Appl. Catal. A: Gen., 293, 91 (2005).

    Article  CAS  Google Scholar 

  13. S.K. Ryi, J. S. Park, S. H. Kim, D.W. Kim and K. I. Cho, J. Memb. Sci., 318, 346 (2008).

    Article  CAS  Google Scholar 

  14. S.K. Ryi, J. S. Park, S.H. Kim, S. C. Hong and D.W. Kim, Desalination, 200, 213 (2006).

    Article  CAS  Google Scholar 

  15. S.K. Ryi, J. S. Park, S.H. Kim, S. C. Hong and D.W. Kim, Desalination, 200, 219 (2006).

    Article  CAS  Google Scholar 

  16. S.K. Ryi, J. S. Park, S.H. Kim, S. C. Hong and D.W. Kim, Desalination, 200, 216 (2006).

    Article  CAS  Google Scholar 

  17. S. K. Ryi, J. S. Park, S. H. Kim, D.W. Kim and J.W. Moon, J. Memb. Sci., 306, 261 (2007).

    Article  CAS  Google Scholar 

  18. J.K. Ali, E. J. Newsom and D.W. T. Rippin, Chem. Eng. Sci., 49, 2129 (1994).

    Article  CAS  Google Scholar 

  19. H. Amandusson, L.G. Ekedahl and H. Dannetun, Appl. Surf. Sci., 153, 259 (2000).

    Article  CAS  Google Scholar 

  20. K. Hou and R. Hughes, J. Memb. Sci., 206, 119 (2002).

    Article  CAS  Google Scholar 

  21. A. Unemoto, A. Kaimai, K. Sato, T. Otake, K. Yashiro, J. Mizusaki, T. Kawada, T. Tsuneki, Y. Shirasaki and I. Yasuda, Int. J. Hydro. Energy, 32, 2881 (2007).

    Article  CAS  Google Scholar 

  22. F.C. Gielens, R. J. J. Knibbeler, P. F. J. Duysinx, H.D. Tong, M.A.G. Vorstman and J. T. F. Keurentjes, J. Memb. Sci., 279, 176 (2006).

    Article  CAS  Google Scholar 

  23. S. Tosti, A. Adrover, A. Basile, V. Camilli, G. Chiappetta and V. Violante, Int. J. Hydro. Energy, 28, 105 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-soo Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, KR., Ihm, SK. & Park, Js. A catalytic membrane reactor for water-gas shift reaction. Korean J. Chem. Eng. 27, 816–821 (2010). https://doi.org/10.1007/s11814-010-0133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-010-0133-7

Key words

Navigation