Skip to main content

Advertisement

Log in

Effects of 5-Azacytidine (AZA) on the Growth, Antioxidant Activities and Germination of Pellicle Cysts of Scrippsiella acuminata (Dinophyceae)

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, we investigated the effects of different concentrations of 5-azacytidine (AZA), a DNA methyltransferase inhibitor, on the growth, antioxidant activities and germination of pellicle cysts of Scrippsiella acuminata. The purpose of this study is to understand the toxic effects of AZA on marine microalgae, and to demonstrate the effect of DNA methyltransferase inhibitors on the germination of pellicle cysts. Results showed that AZA inhibited the growth of S. acuminata significantly, and displaced a clear dose-dependent inhibition trend with the 96h EC50 of 146.77µmolL−1 (35.84 mg L−1). Pellicle cysts of S. acuminata were less sensitive to AZA than the vegetative cells, and the EC50 value of AZA to the germination of pellicle cysts of S. acuminata was 8.08mmolL−1 (1.97g L−1). After exposed to AZA, the antioxidant activities in S. acuminata responded rapidly and significantly. Among them, soluble protein and superoxide dismutase (SOD) were more sensitive to AZA, and significant promotions occurred after exposed to 10 µmolL−1 AZA for 24 h. Meanwhile, malondialdehyde (MDA) contents in algal cells did not change significantly after exposed to low concentrations of AZA, but increased firstly and then decreased under high concentration of AZA. The glutathione (GSH) levels in S. acuminata increased significantly under high concentrations of AZA, and remained unchanged at low concentrations of AZA. The results suggested that the enhanced protein level and SOD activity of S. acuminata eliminated reactive oxygen species (ROS) to a certain extent, and thus protected algal cells against damages of ROS caused by AZA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Rashed, S. A., Ibrahim, M. M., El-Gaaly, G. A., Al-Shehri, S., and Mostafa, A., 2016. Evaluation of radical scavenging system in two microalgae in response to interactive stresses of UV-B radiation and nitrogen starvation. Saudi Journal of Biological Sciences, 23(6): 706–712, DOI: https://doi.org/10.1016/j.sjbs.2016.06.010.

    Article  Google Scholar 

  • Alscher, R. G., Erturk, N., and Heath, L. S., 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53(372): 1331–1341, DOI: https://doi.org/10.1093/jexbot/53.372.1331.

    Article  Google Scholar 

  • Annereau, M., Desmaris, R., Micol, J. B., Lazarovici, J., Chenallier, C., Saada, V., et al., 2014. Results of treatment with 5-aza-cytidine in patients treated for myelodysplastic syndrome or secondary acute myeloid leukemia associated with a concomitant active cancer. Journal of Clinical Oncology, 32(15S): e18029, DOI: https://doi.org/10.1200/jco.2014.32.15_suppl.e18029.

    Article  Google Scholar 

  • Bacova, R., Klejdus, B., Ryant, P., Cernei, N., Adam, V., and Huska, D., 2019. The effects of 5-azacytidine and cadmium on global 5-methylcytosine content and secondary metabolites in the freshwater microalgae Chlamydomonas reinhardtii and Sce-nedesmus quadricauda. Journal of Phycology, 55(2): 329–342, DOI: https://doi.org/10.1111/jpy.12819.

    Article  Google Scholar 

  • Betekhtin, A., Milewska-Hendel, A., Chajec, L., Rojek, M., Nowak, K., Kwasniewska, J., et al., 2018. 5-Azacitidine induces cell death in a tissue culture of Brachypodium distachyon. International Journal of Molecular Sciences, 19(6): 1806, DOI: https://doi.org/10.3390/ijms19061806.

    Article  Google Scholar 

  • Bravo, I., and Figueroa, R. I., 2014. Towards an ecological understanding of dinoflagellate cyst functions. Microorganisms, 2(1): 11–32, DOI: https://doi.org/10.3390/microorganisms2010011.

    Article  Google Scholar 

  • Bravo, I., Figueroa, R. I., Garcés, E., Fraga, S., and Massanet, A., 2010. The intricacies of dinoflagellate pellicle cysts: The example of Alexandrium minutum cysts from a bloom-recurrent area (Bay of Baiona, NW Spain). Deep Sea Research Part II: Topical Studies in Oceanography, 57(3–4): 166–174, DOI: https://doi.org/10.1016/j.dsr2.2009.09.003.

    Article  Google Scholar 

  • Chen, R. Z., Chen, X. H., Huo, W., Zheng, S. Z., Lin, Y. L., and Lai, Z. X., 2021. Transcriptome analysis of azacitidine (5-AzaC)-treatment affecting the development of early somatic embryogenesis in longan. The Journal of Horticultural Science and Biotechnology, 96(3): 311–323, DOI: https://doi.org/10.1080/14620316.2020.1847695.

    Article  Google Scholar 

  • Cheng, Y. H., Peng, X. Y., Yu, Y. C., Sun, Z. Y., and Han, L., 2019. The Effects of DNA methylation inhibition on flower development in the dioecious plant Salix viminalis. Forests, 10(2): 173, DOI: https://doi.org/10.3390/f10020173.

    Article  Google Scholar 

  • Christman, J. K., 2002. 5-azacytidine and 5-aza-2’-deoxycytidine as inhibitors of DNA methylation: Mechanistic studies and their implications for cancer therapy. Oncogene, 21(35): 5483–5495, DOI: https://doi.org/10.1038/sj.onc.1205699.

    Article  Google Scholar 

  • Fan, X., Han, W. T., Teng, L. H., Jiang, P., Zhang, X. W., Xu, D., et al., 2020. Single-base methylome profiling of the giant kelp Saccharina japonica reveals significant differences in DNA methylation to microalgae and plants. New Phytologist, 225(1): 234–249, DOI: https://doi.org/10.1111/nph.16125.

    Article  Google Scholar 

  • Feng, T. Y., and Chiang, K. S., 1984. The persistence of maternal inheritance in Chlamydomonas despite hypomethylation of chloroplast DNA induced by inhibitors. Proceedings of the National Academy of Sciences. USA, 81(11): 3438–3442, DOI: https://doi.org/10.1073/pnas.81.11.3438.

    Article  Google Scholar 

  • Gao, Q. T., Wong, Y. S., and Tam, N. F. Y., 2017. Antioxidant responses of different microalgal species to nonylphenol-induced oxidative stress. Journal of Applied Phycology, 29(3): 1317–1329, DOI: https://doi.org/10.1007/s10811-017-1065-y.

    Article  Google Scholar 

  • Garcés, E., Masó, M., and Camp, J., 2002. Role of temporary cysts in the population dynamics of Alexandrium taylori (Dinophyceae). Journal of Plankton Research, 24(7): 681–686, DOI: https://doi.org/10.1093/plankt/24.7.681.

    Article  Google Scholar 

  • Guillard, R. R. L., 1975. Culture of phytoplankton for feeding marine invertebrates. In: Culture of Marine Invertebrate Animals. Smith, W. L., and Chanley, M. H., eds., Springer, Boston, MA, 29–60.

    Chapter  Google Scholar 

  • Guo, X., Wang, Z. H., Liu, L., and Li, Y., 2021. Transcriptome and metabolome analyses of cold and darkness-induced pellicle cysts of Scrippsiella trochoidea. BMC Genomics, 22(1): 526, DOI: https://doi.org/10.1186/s12864-021-07840-7.

    Article  Google Scholar 

  • Ho, P., Kong, K. F., Chan, Y. H., Tsang, J. S. H., and Wong, J. T. Y., 2007. An unusual S-adenosylmethionine synthetase gene from dinoflagellate is methylated. BMC Molecular Biology, 8(1): 87, DOI: https://doi.org/10.1186/1471-2199-8-87.

    Article  Google Scholar 

  • Li, M. L., Zeng, G. W., and Zhu, Z. J., 2003. Analysis of effects of 5-azficytidine on promoting flowering in non-heading Chinese cabbage. Journal of Zhejiang University (Agriculture and Life Sciences), 29(3): 287–290 (in Chinese with English abstract).

    Google Scholar 

  • Li, X. F., Wang, W., Zhang, X., and Wu, Y., 2022. Azacitidine and donor lymphocyte infusion for patients with relapsed acute myeloid leukemia and myelodysplastic syndromes after allogeneic hematopoietic stem cell transplantation: A meta-analysis. Frontiers in Oncology, 12: 949534, DOI: https://doi.org/10.3389/fonc.2022.949534.

    Article  Google Scholar 

  • Li, X. F., Xia, Z. Y., Tang, J. Q., Wu, J. H., Tong, J., Li, M. J., et al., 2017. Identification and biological evaluation of secondary metabolites from marine derived fungi–Aspergillus sp. SCSIOW3, cultivated in the presence of epigenetic modifying agents. Molecules, 22(8): 1302, DOI: https://doi.org/10.3390/molecules22081302.

    Article  Google Scholar 

  • Lin, S. J., 2011. Genomic understanding of dinoflagellates. Research in Microbiology, 162(6): 551–269, DOI: https://doi.org/10.1016/j.resmic.2011.04.006.

    Article  Google Scholar 

  • Lindeman, L. C., Thaulow, J., Song, Y., Kamstra, J. H., Xie, L., Asselman, J., et al., 2019. Epigenetic, transcriptional and phenotypic responses in two generations of Daphnia magna exposed to the DNA methylation inhibitor 5-azacytidine. Environmental Epigenetics, 5(3): 1–12, DOI: https://doi.org/10.1093/eep/dvz016.

    Article  Google Scholar 

  • Lohuis, M. R., and Miller, D. J., 1998. Light-regulated transcription of genes encoding peridinin chlorophyll a proteins and the major intrinsic light-harvesting complex proteins in the dinoflagellate Amphidinium carterae Hulburt (Dinophycae): Changes in cytosine methylation accompany photoadaptation. Plant Physiology, 117(1): 189–196, DOI: https://doi.org/10.1104/pp.117.1.189.

    Article  Google Scholar 

  • Lopez, D., Hamaji, T., Kropat, J., Hoff, D. P., Morselli, M., Rubbi, L., et al., 2015. Dynamic changes in the transcriptome and methylome of Chlamydomonas reinhardtii throughout its life cycle. Plant Physiology, 169(4): 2730–2743, DOI: https://doi.org/10.1104/pp.15.00861.

    Google Scholar 

  • Lu, Y. C., Feng, S. J., Zhang, J. J., Luo, F., Zhang, S., and Yang, H., 2016. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Scientific Report, 6: 18985, DOI: https://doi.org/10.1038/srep18985.

    Article  Google Scholar 

  • Mishra, S., Srivastava, S., Tripathi, R. D., Kumar, R., Seth, C. S., and Gupta, D. K., 2006. Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere, 65(6): 1027–1039, DOI: https://doi.org/10.1016/j.chemosphere.2006.03.033.

    Article  Google Scholar 

  • Mittler, R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7(9): 405–410, DOI: 10.1016/S1360–1385(02)02312-9.

    Article  Google Scholar 

  • Nowicka, A., Juzon, K., Krzewska, M., Dziurka, M., Dubas, E., Kopec, P., et al., 2019. Chemically-induced DNA de-methylation alters the effectiveness of microspore embryogenesis in triticale. Plant Science, 287: 110189, DOI: https://doi.org/10.1016/j.plantsci.2019.110189.

    Article  Google Scholar 

  • Ogneva, Z. V., Suprun, A. R., Dubrovina, A. S., and Kiselev, K. V., 2019. Effect of 5-azacytidine induced DNA demethylation on abiotic stress tolerance in Arabidopsis thaliana. Plant Protection Science, 55(2): 73–80, DOI: https://doi.org/10.17221/94/2018-PPS.

    Article  Google Scholar 

  • Olli, K., 2004. Temporary cyst formation of Heterocapsa triquetra (Dinophyceae) in natural populations. Marine Biology, 145(1): 1–8, DOI: https://doi.org/10.1007/s00227-004-1295-9.

    Article  Google Scholar 

  • Onda, D. F. L., Lluisma, A. O., and Azanza, R. V., 2014. Development, morphological characteristics and viability of temporary cysts of Pyrodinium bahamense var. compressum (Dinophyceae) in vitro. European Journal of Phycology, 49(3): 265–275, DOI: https://doi.org/10.1080/09670262.2014.915062.

    Article  Google Scholar 

  • Osorio-Montalvo, P., Sáenz-Carbonell, L., and De-la-Peña, C., 2018. 5-Azacytidine: A promoter of epigenetic changes in the quest to improve plant somatic embryogenesis. International Journal of Molecular Science, 19(10): 3182–3182, DOI: https://doi.org/10.3390/ijms19103182.

    Article  Google Scholar 

  • Palsamy, P., Bidasee, K. R., and Shinohara, T., 2014. Valproic acid suppresses Nrf2/Keap1 dependent antioxidant protection through induction of endoplasmic reticulum stress and Keap1 promoter DNA demethylation in human lens epithelial cells. Experimental Eye Research, 121: 26–34, DOI: https://doi.org/10.1016/j.exer.2014.01.021.

    Article  Google Scholar 

  • Powles, S. B., 1984. Photoinhibition of photosynthesis induced by visible-light. Annual Review of Plant Biology, 35(1): 15–44, DOI: https://doi.org/10.1146/annurev.pp.35.060184.000311.

    Article  Google Scholar 

  • Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabiko, H., 1990. A single treatment of rice seedlings with 5-azacy-tidine induces heritable dwarfism and undermethylation of genomic DNA. Molecular and General Genetics, 220(3): 441–447, DOI: https://doi.org/10.1007/BF00391751.

    Article  Google Scholar 

  • Sheldon, C. C., Burn, J. E., Perez, P. P., Metzger, J., Edwards, J. A., Peacock, W. J. et al, 1999. The FLF MADS box gene: A repressor of flowering in arabidopsis regulated by vernalization and methylation. The Plant Cell, 11(3): 445–458, DOI: https://doi.org/10.1105/tpc.11.3.445.

    Article  Google Scholar 

  • Shin, H. H., Li, Z., Yoon, Y. H., Oh, S. J., and Lim, W. A., 2017. Formation and germination of temporary cysts of Cochlodinium polykrikoides Margalef (Dinophyceae) and their ecological role in dense blooms. Harmful Algae, 66: 57–64, DOI: https://doi.org/10.1016/j.hal.2017.05.002.

    Article  Google Scholar 

  • Stephens, T. G., Gonzalez-Pech, R. A., Cheng, Y. Y., Mohamed, A. R., Burt, D. W., Bhattacharya, D., et al, 2020. Genomes of the dinoflagellate Polarella glacialis encode tandemly repeated single-exon genes with adaptive functions. BMC Biology, 18: 56, DOI: https://doi.org/10.1186/s12915-020-00782-8.

    Article  Google Scholar 

  • Taşkin, K. M., Özbilen, A., Sezer, F., Hurkan, K., and Gunes, S., 2017. Structure and expression of DNA methyltransferase genes from apomictic and sexual Boechera species. Computational Biology and Chemistry, 67: 15–21, DOI: https://doi.org/10.1016/j.compbiolchem.2016.12.002.

    Article  Google Scholar 

  • Veluchamy, A., Lin, X., Maumus, F., Rivarola, M., Bhavsar, J., Creasy, T., et al., 2013. Insights into the role of DNA methylation in diatoms by genome-wide profiling in Phaeodactylum tricornutum. Nature Communications, 4: 2091, DOI: https://doi.org/10.1038/ncomms3091.

    Article  Google Scholar 

  • Wang, Z. C., Nie, L. J., and He, Y. X., 2009. The effect of 5-azacytidine to the DNA methylation and morphogenesis character of chrysanthemum during in vitro growth. Acta Horticulturae Sinica, 36(12): 1783–1790 (in Chinese with English abstract).

    Google Scholar 

  • Wang, Z. H., Nie, X. P., Yue, W. J., and Li, X., 2011. Physiological responses of three marine microalgae exposed to cyper-methrin. Environmental Toxicology, 27(10): 563–572, DOI: https://doi.org/10.1002/tox.20678.

    Article  Google Scholar 

  • Wang, Z. H., Qi, Y. Z., and Yang, Y. F., 2007. Cyst formation: An important mechanism for the termination of Scrippsiella trochoidea (Dinophyceae) bloom. Journal of Plankton Research, 29(2): 209–218, DOI: https://doi.org/10.1093/plankt/fbm008.

    Article  Google Scholar 

  • Yan, T., Li, X., Cao, Y., Wu, B. Y., Wang, J., and Zhang, M. M., 2021. Effects of 5-azacytidine on drought yolerance of rice with high expression of C4-PEPC. Acta Agriculturae Boreali-Sinica, 36(4): 96–107 (in Chinese with English abstract).

    Google Scholar 

  • Yang, F., Li, L., and Lin, S. J., 2020. Methylation pattern and expression dynamics of methylase and photosystem genes under varying light Intensities in Fugacium kawagutii (Symbio-diniaceae). Journal of Phycology, 56(6): 1738–1747, DOI: https://doi.org/10.1111/jpy.13070-20-045.

    Article  Google Scholar 

  • Zhang, Y. X., Si, F. H., Wang, Y. Y., Liu, C. Y., Zhang, T., Yuan, Y. C., et al., 2020. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. Plant Physiology and Biochemistry, 147: 91–100, DOI: https://doi.org/10.1016/j.plaphy.2019.12.010.

    Article  Google Scholar 

  • Zhao, J. G., Tang, T., Zhang, J. N., Guo, H., and Wang, Z. H., 2022. Studies on growth and antioxidant responses of two dinoflagellates species under exposure to decitabine. Asian Journal of Ecotoxicology, 17(3): 468–476 (in Chinese with English abstract).

    Google Scholar 

  • Zinssmeister, C., Soehner, S., Facher, E., Kirsch, M., Meier, K. J. S., and Gottschling, M., 2011. Catch me if you can: The taxonomic identity of Scrippsiella trochoidea (F. Stein) A.R.Loebl. (Thoracosphaeraceae, Dinophyceae). Systematics and Biodiversity, 9(2): 145–157, DOI: https://doi.org/10.1080/14772000.2011.586071.

    Article  Google Scholar 

  • Zutshi, S., Choudhary, M., Bharat, N., Abdin, M. Z., and Fatma, T., 2008. Evaluation of antioxidant defense responses to lead stress in Hapalosiphon fontinalis-339. Journal of Phycology, 44(4): 889–896, DOI: https://doi.org/10.1111/j.1529-8817.2008.00542.x.

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (No. 42076141).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhaohui Wang or Ren Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, J., Tang, T. et al. Effects of 5-Azacytidine (AZA) on the Growth, Antioxidant Activities and Germination of Pellicle Cysts of Scrippsiella acuminata (Dinophyceae). J. Ocean Univ. China 22, 1660–1668 (2023). https://doi.org/10.1007/s11802-023-5583-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5583-8

Key words

Navigation