Skip to main content
Log in

On the Generation and Evolution of Internal Solitary Waves in the Andaman Sea

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Internal solitary waves (ISWs) are ubiquitous in the Andaman Sea, as revealed by synthetic aperture radar images; however, their generation mechanisms and corresponding influencing factors remain unknown. Based on a nonhydrostatic two-dimensional model, the generation of ISW packets along the transect of a channel lying between Batti Malv Island and Car Nicobar Island is investigated. Moreover, the influences of topographic characteristics, seasonal stratifications, and tidal forcings are analyzed through a series of sensitivity runs. The simulation results indicate that bidirectional rank-ordered ISW packets are generated by the nonlinear steepening of internal tides. An east-west ISW asymmetry is observed, which is attributed to distinct topographic characteristics. The surrounding sills can also generate internal wave beams, which modulate the intensity of ISWs. However, the topographic structure of the west flank of the ridge mainly contributes to the suppression of westward ISWs, which decreases the modulating effect of internal wave beams. During the spring tide, the generation of ISWs is enhanced. During the neap tide, ISWs are weak, and the east-west ISW asymmetry is less obvious. Moreover, seasonal stratification only has a minor effect on the generation and evolution of ISWs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alford, M. H., Lien, R. C., Simmons, H., Klymak, J., Ramp, S., Yang, Y. J., et al., 2010. Speed and evolution of nonlinear internal waves transiting the South China Sea. Journal of Physical Oceanography, 40(6): 1338–1355.

    Article  Google Scholar 

  • Alford, M. H., Peacock, T., Mackinnon, J. A., Nash, J. D., Buijsman, M. C., Centuroni, L. R., et al., 2015. The formation and fate of internal waves in the South China Sea. Nature, 521(7550): 65–69.

    Article  Google Scholar 

  • Alpers, W., Heng, W. C., and Hock, L., 1997. Observation of internal waves in the Andaman Sea by ERS SAR. IGARSS97 IEEE International Geoscience & Remote Sensing Symposium Remote Sensing — A Scientific Vision for Sustainable Development. IEEE, 4: 1518–1520.

    Google Scholar 

  • Baines, P. G., 1973. The generation of internal tides by flat-bump topography. Deep Sea Research and Oceanographic Abstracts, 20: 179–205.

    Article  Google Scholar 

  • Bell, T. H., 1975. Lee waves in stratified flows with simple harmonic time dependence. Journal of Fluid Mechanics, 67: 705–722.

    Article  Google Scholar 

  • Buijsman, M. C., McWillianms, J. C., and Jackson, C. R., 2010. East-west asymmetry in nonlinear internal waves from Luzon Strait. Journal of Geophysical Research: Oceans, 115: C10057.

    Article  Google Scholar 

  • Cummins, P. F., Armi, L., and Vagle, S., 2006. Upstream internal hydraulic jumps. Journal of Physical Oceanography, 36: 753–769.

    Article  Google Scholar 

  • Da Silva, J. C. B., and Magalhaes, J. M., 2016. Internal solitons in the Andaman Sea: A new look at an old problem. SPIE Remote Sensing. Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2016, 9999: 999907.

    Article  Google Scholar 

  • Dong, J., Zhao, W., Chen, H., Meng, Z., Shi, X., and Tian, J., 2015. Asymmetry of internal waves and its effects on the ecological environment observed in the northern South China Sea. Deep-Sea Research Part I, 98: 94–101.

    Article  Google Scholar 

  • Egbert, G. D., and Erofeeva, S. Y., 2002. Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19: 183–204.

    Article  Google Scholar 

  • Farmer, D., Li, Q., and Park, J. H., 2009. Internal wave observations in the South China Sea: The role of rotation and non-linearity. Atmosphere-Ocean, 47: 267–280.

    Article  Google Scholar 

  • Garrett, C., and Kunze, E., 2007. Internal tide generation in the deep ocean. Annual Review of Fluid Mechanics, 39: 57–87.

    Article  Google Scholar 

  • Gerkema, T., 2001. Internal and interfacial tides: Beam scattering and local generation of solitary waves. Journal of Marine Research, 59: 227–255.

    Article  Google Scholar 

  • Gill, A. E., 1982. Atmosphere-Ocean Dynamics. Academic Press, London, 645pp.

    Google Scholar 

  • Guo, C., Chen, X., Vlasenko, V., and Stashchuk, N., 2011. Numerical investigation of internal solitary waves from the Luzon Strait: Generation process, mechanism and three-dimensional effects. Ocean Modelling, 38(3): 203–216.

    Article  Google Scholar 

  • Huang, X., Chen, Z., Zhao, W., Zhang, Z., Zhou, C., Yang, Q., et al., 2016. An extreme internal solitary wave event observed in the northern South China Sea. Scientific Reports, 6: 30041.

    Article  Google Scholar 

  • Huang, X., Zhao, W., Tian, J., and Yang, Q., 2014. Mooring observations of internal solitary waves in the deep basin west of Luzon Strait. Acta Oceanologica Sinica, 33: 82–89.

    Article  Google Scholar 

  • Jackson, C. R., 2007. Internal wave detection using the moderate resolution imaging spectroradiometer (MODIS). Journal of Geophysical Research: Oceans, 112: C11012.

    Article  Google Scholar 

  • Jackson, C. R., da Silva, J. C. B., and Jeans, G., 2012. The generation of nonlinear internal waves. Oceanography, 25: 108–123.

    Article  Google Scholar 

  • Jensen, T. G., Magalhães, J., Wijesekera, H. W., Buijsman, M., Helber, R., and Richman, J., 2020. Numerical modelling of tidally generated internal wave radiation from the Andaman Sea into the Bay of Bengal. Deep-Sea Research Part II, 172: 104710.

    Article  Google Scholar 

  • Jones, N. L., Ivey, G. N., Rayson, M. D., and Kelly, S. M., 2020. Mixing driven by breaking nonlinear internal waves. Geophysical Research Letters, 47: 19.

    Article  Google Scholar 

  • Lamb, K. G., 2014. Internal wave breaking and dissipation mechanisms on the continental slope shelf. Annual Review of Fluid Mechanics, 46: 231–254.

    Article  Google Scholar 

  • Lee, C. Y., and Beardsley, R. C., 1974. The generation of long nonlinear internal waves in a weakly stratified shear flow. Journal of Geophysical Research Atmospheres, 79: 453–462.

    Article  Google Scholar 

  • Legg, S., and Huijts, K. M. H., 2006. Preliminary simulations of internal waves and mixing generated by finite amplitude tidal flow over isolated topography. Deep-Sea Research Part II, 53: 140–156.

    Article  Google Scholar 

  • Legg, S., and Klymak, J., 2008. Internal hydraulic jumps and overturning generated by tidal flow over a tall steep ridge. Journal of Physical Oceanography, 38: 1949–1964.

    Article  Google Scholar 

  • Li, Q., 2014. Numerical assessment of factors affecting nonlinear internal waves in the South China Sea. Progress in Oceanography, 121: 24–43.

    Article  Google Scholar 

  • Li, Q., and Farmer, D. M., 2011. The generation and evolution of nonlinear internal waves in the deep basin of the South China Sea. Journal of Physical Oceanography, 41: 1345–1363.

    Article  Google Scholar 

  • Lien, R. C., D’Asaro, E., Henyey, F., Chang, M. H., Tang, T. Y., and Yang, Y. J., 2012. Trapped core formation within a shoaling nonlinear internal wave. Journal of Physical Oceanography, 42: 511–525.

    Article  Google Scholar 

  • Lien, R. C., Henyey, F., Ma, B., and Yang, Y. J., 2014. Large-amplitude internal solitary waves observed in the northern South China Sea: Properties and energetics. Journal of Physical Oceanography, 44: 1095–1115.

    Article  Google Scholar 

  • Magalhaes, J. M., and da Silva, J. C. B., 2018. Internal solitary waves in the Andaman Sea: New insights from SAR imagery. Remote Sensing, 10: 861.

    Article  Google Scholar 

  • Magalhaes, J. M., da Silva, J. C. B., and Buijsman, M. C., 2020. Long lived second mode internal solitary waves in the Andaman Sea. Scientific Reports, 10: 10234.

    Article  Google Scholar 

  • Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C., 1997. A finite volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. Journal of Geophysical Research: Oceans, 102: 5753–5766.

    Article  Google Scholar 

  • Maxworthy, T., 1979. A note on the internal solitary waves produced by tidal flow over a three-dimensional ridge. Journal of Geophysical Research: Oceans, 84: 338–346.

    Article  Google Scholar 

  • Min, W., Li, Q., Zhang, P., Xu, Z., and Yin, B., 2019. Generation and evolution of internal solitary waves in the southern Taiwan Strait. Geophysical and Astrophysical Fluid Dynamics, 113: 287–302.

    Article  Google Scholar 

  • Mohanty, S., Rao, A. D., and Latha, G., 2018. Energetics of semidiurnal internal tides in the Andaman Sea. Journal of Geophysical Research: Oceans, 123: 6224–6240.

    Article  Google Scholar 

  • Moum, J. N., Klymak, J. M., Nash, J. D., Perlin, A., and Smyth, W. D., 2007. Energy transport by nonlinear internal waves. Journal of Physical Oceanography, 37: 1968–88.

    Article  Google Scholar 

  • Nakamura, T., Awaji, T., Hatayama, T., Akitomo, K., Takizawa, T., Kono, T., et al., 2000. The generation of large-amplitude unsteady lee waves by subinertial K1 tidal flow: A possible vertical mixing mechanism in the Kuril Straits. Journal of Physical Oceanography, 30: 1601–1621.

    Article  Google Scholar 

  • Osborne, A. R., and Burch, T. L., 1980. Internal solitons in the Andaman Sea. Science, 208: 451–460.

    Article  Google Scholar 

  • Pacanowski, I., and Philander, S., 1981. Parameterization of vertical mixing in numerical models of tropical oceans. Journal of Physical Oceanography, 11(11): 1443–1451.

    Article  Google Scholar 

  • Perry, R. B., and Schimke, G. R., 1965. Large-amplitude internal waves observed off the northwest coast of Sumatra. Journal of Geophysical Research: Atmospheres, 70(10): 2319–2324.

    Article  Google Scholar 

  • Pickering, A., and Alford, M. H., 2012. Velocity structure of internal tide beams emanating from Kaena Ridge, Hawaii. Journal of Physical Oceanography, 42(6): 1039–1044.

    Article  Google Scholar 

  • Raju, N. J., Dash, M. K., Bhaskaran, P. K., and Pandey, P. C., 2021. Numerical Investigation of bidirectional mode-1 and mode-2 internal solitary wave generation from north and south of Batti Malv Island, Nicobar Islands, India. Journal of Physical Oceanography, 51: 47–62.

    Article  Google Scholar 

  • Raju, N. J., Dash, M. K., Dey, S. P., and Bhaskaran, P. K., 2019. Potential generation sites of internal solitary waves and their propagation characteristics in the Andaman Sea — A study based on MODIS true-colour and SAR observations. Environmental Monitoring and Assessment, 191: 809.

    Article  Google Scholar 

  • Sutherland, B. R., Barrett, K. J., and Ivey, G. N., 2013. Shoaling internal solitary waves. Journal of Geophysical Research: Oceans, 118: 4111–4124.

    Article  Google Scholar 

  • Vitousek, S., and Fringer, O. B., 2011. Physical vs. numerical dispersion in nonhydrostatic ocean modelling. Ocean Modelling, 40(1): 72–86.

    Article  Google Scholar 

  • Vlasenko, V., and Stashchuk, N., 2007. Three-dimensional shoaling of large-amplitude internal waves. Journal of Geophysical Research: Oceans, 112: C11018.

    Article  Google Scholar 

  • Vlasenko, V., Guo, C., and Stashchuk, N., 2012. On the mechanism of A-type and B-type internal solitary wave generation in the northern South China Sea. Deep-Sea Research Part I, 69: 100–112.

    Article  Google Scholar 

  • Vlasenko, V., Stashchuk, N., and Hutter, K., 2002. Water exchange in fjords induced by tidally generated internal lee waves. Dynamics of Atmospheres and Oceans, 35: 63–89.

    Article  Google Scholar 

  • Vlasenko, V., Stashchuk, N., and Hutter, K., 2005. Baroclinic Tides: Theoretical Modeling and Observational Evidence. Cambridge University Press, New York, 351pp.

    Book  Google Scholar 

  • Vlasenko, V., Stashchuk, N., and Nimmo-Smith, W. A. M., 2018. Three-dimensional dynamics of baroclinic tides over a seamount. Journal of Geophysical Research: Oceans, 123: 1263–1285.

    Article  Google Scholar 

  • Vlasenko, V., Stashchuk, N., Guo, C., and Chen, X., 2010. Multimodal structure of baroclinic tides in the South China Sea. Nonlinear Processes in Geophysics, 17: 529–543.

    Article  Google Scholar 

  • Wang, S., Meng, J., Li, Q., and Chen, X., 2020. Evolution of internal solitary waves on the slope-shelf topography in the northern South China Sea. Ocean Dynamics, 70: 729–743.

    Article  Google Scholar 

  • Xie, J., He, Y., Chen, Z., Xu, J., and Cai, S., 2015. Simulations of internal solitary wave interactions with mesoscale eddies in the northeastern South China Sea. Journal of Physical Oceanography, 45(12): 150923131654000.

    Article  Google Scholar 

  • Xu, Z., Yin, B., Yang, H., and Qi, J., 2012. Depression and elevation internal solitary waves in a two-layer fluid and their forces on cylindrical piles. Chinese Journal of Oceanology & Limnology, 30: 703–712.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 41876012), the National Basic Research Program of China (973 Program) (No. 2017YFC1405605), and the Fundamental Research Funds for the Central Universities (No. 202061001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Xu, T., Wang, J. et al. On the Generation and Evolution of Internal Solitary Waves in the Andaman Sea. J. Ocean Univ. China 22, 335–348 (2023). https://doi.org/10.1007/s11802-023-5125-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-023-5125-4

Key words

Navigation