Skip to main content
Log in

Design of Copper Oxide Nanosheets-Loaded Zeolite with Efficient Inhibition of Marine Bacteria

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Copper oxide-loaded zeolite 4A nanocomposites (CuO-zeolite NCs) were successfully prepared by modifying zeolite 4A with CuSO4 aqueous solution as the copper source. Zeolite 4A showed an important role in hosting copper oxide, and CuO-zeolite NCs exhibited a controlled release of copper ions. XRD patterns confirmed the appearance of new diffraction peaks of copper oxide at 35.83° and 38.83°. CuO nanosheets formed on the surface of zeolite 4A were about 30–40nm thick over a width of 200–300nm. CuO-zeolite NCs were primarily composed of Cu, Si, Al and O, as measured by XPS. Cu 2p3/2 and Cu 2p1/2 peaks were fitted into two main peaks centered at 934.7eV and 954.6eV, which were attributed to Cu (II). Zeolite 4A and CuO-zeolite NC displayed reversible Langmuir isotherm (type-I) characteristics and showed maximum adsorption quantities of almost 200 cm3 g−1 at a relative pressure of 1.0 by CO2 adsorption-desorption experiments. The antibacterial efficiencies of the CuO-zeolite NC were 99.4%, 96.7%, and 96.8% against Pseudoalteromonas tetraodonis (P. tetraodonis), Micrococcus luteus (M. luteus), and Shewanella putrefaciens (S. putrefaciens), respectively. These values showed that nano CuO-loaded zeolite 4A acted as a strong bactericide against marine bacteria. CuO-zeolite NCs can be further applied to marine antifouling coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad, I., Islam, M., Habis, N. A., and Parvez, S., 2020. Hot-pressed graphene nanoplatelets or/and zirconia reinforced hybrid alumina nanocomposites with improved toughness and mechanical characteristics. Journal of Materials Science & Technology, 40: 135–145.

    Article  Google Scholar 

  • Akintelu, S. A., Folorunso, A. S., Folorunso, F. A., and Oyebamiji, A. K., 2020. Green synthesis of copper oxide nanoparticles for biomedical application and environmental remediation. Heliyon, 6(7): e04508.

    Article  Google Scholar 

  • Alswat, A. A., Ahmad, M. B., and Saleh, T. A., 2017. Preparation and characterization of zeolitezinc oxide-copper oxide nanocomposite: Antibacterial activities. Colloid and Interface Science Communications, 16: 19–24.

    Article  Google Scholar 

  • Ananth, A., Dharaneedharan, S., Heo, M. S., and Mok, Y. S., 2015. Copper oxide nanomaterials: Synthesis, characterization and structure-specific antibacterial performance. Chemical Engineering Journal, 262: 179–188.

    Article  Google Scholar 

  • Araki, S., Li, T., Li, K., and Yamamoto, H., 2019. Preparation of zeolite hollow fibers for high-efficiency cadmium removal from waste water. Separation and Purification Technology, 221: 393–398.

    Article  Google Scholar 

  • Brazlauskas, M., and Kitrys, S., 2008. Synthesis and properties of CuO/zeolite sandwich type adsorbent-catalysts. Chinese Journal of Catalysis, 29(1): 25–30.

    Article  Google Scholar 

  • Cheng, M., Wang, Y., Wang, W. H., Wang, G. W., Zhu, X. L., and Li, C. Y., 2021. Promoting effect of copper oxide on CsX zeolite catalyst for side-chain alkylation of toluene with methanol. Microporous and Mesoporous Materials, 311: 110732.

    Article  Google Scholar 

  • Dong, J. P., Tian, T. L., Ren, L. X., Zhang, Y., Xu, J. Q., and Cheng, X. W., 2015. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Colloids and Surfaces B: Biointerfaces, 125: 206–212.

    Article  Google Scholar 

  • El-Shafai, N. M., Abdelfatah, M., El-Mehasseb, I. M., Ramadan, M. S., Ibrahim, M. M., El-Shaer, A., et al., 2021. Enhancement of electrochemical properties and photocurrent of copper oxide by heterojunction process as a novel hybrid nano-composite for photocatalytic anti-fouling and solar cell applications. Separation and Purification Technology, 267: 118631.

    Article  Google Scholar 

  • Karuppannan, S. K., Ramalingam, R., Khalith, M. S. B., Musthafa, S. A., Dowlath, M. J. H., Ramanujam, G. M., et al., 2021. Copper oxide nanoparticles infused electrospun polycaprolactone/gelatin scaffold as an antibacterial wound dressing. Materials Letters, 294: 129787.

    Article  Google Scholar 

  • Lv, Y. Y., Liu, J., Zhang, Z. Y., Zhang, W. H., Wang, A. Y., Tian, F., et al., 2021. Green synthesis of CuO nanoparticles-loaded ZnO nanowires arrays with enhanced photocatalytic activity. Materials Chemistry and Physics, 267: 124703.

    Article  Google Scholar 

  • Majumdar, D., and Ghosh, S., 2020. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. Journal of Energy Storage, 34: 101995.

    Article  Google Scholar 

  • Mekatel, E. H., Amokrane, S., Aid, A., Nibou, D., and Trari, M., 2015. Adsorption of methyl orange on nanoparticles of a synthetic zeolite NaA/CuO. Comptes Rendus Chimie, 18(3): 336–344.

    Article  Google Scholar 

  • Menazea, A. A., and Ahmed, M. K., 2020. Nanosecond laser ablation assisted the enhancement of antibacterial activity of copper oxide nano particles embedded though Polyethylene Oxide/Polyvinyl pyrrolidone blend matrix. Radiation Physics and Chemistry, 174: 108911.

    Article  Google Scholar 

  • Meng, T., Ren, N., and Ma, Z., 2015. Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition. Journal of Molecular Catalysis A: Chemical, 404–405: 233–239.

    Article  Google Scholar 

  • Murugappan, G., and Sreeram, K. J., 2021. Nano-biocatalyst: Bi-functionalization of protease and amylase on copper oxide nanoparticles. Colloids and Surfaces B: Biointerfaces, 197: 111386.

    Article  Google Scholar 

  • Nayan, N., Sahdan, M. Z., Wei, L. J., Ahmad, M. K., Lias, J., Fhong, S. C., et al., 2016. Correlation between microstructure of copper oxide thin films and its gas sensing performance at room temperature. Procedia Chemistry, 20: 45–51.

    Article  Google Scholar 

  • Ninan, N., Muthiah, M., Yahaya, N. A. B., Park, I. K., Elain, A., Wong, T. W., et al., 2014. Antibacterial and wound healing analysis of gelatin/zeolite scaffolds. Colloids and Surfaces B: Biointerfaces, 115: 244–252.

    Article  Google Scholar 

  • Noroozi, R., Musawi, T. J. A., Kazemian, H., Kalhori, E. M., and Zarrabi, M., 2018. Removal of cyanide using surface-modified Linde type — A zeolite nanoparticles as an efficient and eco-friendly material. Journal of Water Process Engineering, 21: 44–51.

    Article  Google Scholar 

  • Panda, A. P., Jha, U., and Swain, S. K., 2020. Synthesis of nanostructured copper oxide loaded boehmite (CuO_Boehmite) for adsorptive removal of As(III/V) from aqueous solution. Journal of Water Process Engineering, 37: 101506.

    Article  Google Scholar 

  • Pandiyarajan, T., Udayabhaskar, R., Vignesh, S., James, R. A., and Karthikeyan, B., 2013. Synthesis and concentration dependent antibacterial activities of CuO nanoflakes. Materials Science and Engineering: C, 33(4): 2020–2024.

    Article  Google Scholar 

  • Perla, V. K., Ghosh, S. K., and Mallick, K., 2020. Bipolar resistive switching behavior of carbon nitride supported copper oxide nanoparticles. Chemical Physics Letters, 754: 137650.

    Article  Google Scholar 

  • Rezaie, A. B., Montazer, M., and Rad, M. M., 2018. Environmentally friendly low cost approach for nano copper oxide functionalization of cotton designed for antibacterial and photocatalytic applications. Journal of Cleaner Production, 204: 425–436.

    Article  Google Scholar 

  • Rutkowska, I. A., Wadas, A., Szaniawska, E., Chmielnicka, A., Zlotorowicz, A., and Kulesza, P. J., 2020. Elucidation of activity of copper and copper oxide nanomaterials for electrocatalytic and photoelectrochemical reduction of carbon dioxide. Current Opinion in Electrochemistry, 23: 131–138.

    Article  Google Scholar 

  • Show, B., Ahmed, S. F., Mondal, A., and Mukherjee, N., 2020. Hierarchical copper oxide as efficient enzymeless amperometric biosensor and promising photocatalyst. Journal of Environmental Chemical Engineering, 9(2): 104748.

    Article  Google Scholar 

  • Soori, F., and Ejhieh, A. N., 2018. Synergistic effects of copper oxide-zeolite nanoparticles composite on photocatalytic degradation of 2,6-dimethylphenol aqueous solution. Journal of Molecular Liquids, 255: 250–256.

    Article  Google Scholar 

  • Sorekine, G., Anduwan, G., Waimbo, M. N., Osora, H., Velusamy, S., Kim, S., et al., 2021. Photocatalytic studies of copper oxide nanostructures for the degradation of methylene blue under visible light. Journal of Molecular Structure, 1248: 131487.

    Article  Google Scholar 

  • Stohs, S. J., and Bagchi, D., 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology and Medicine, 18(2): 321–336.

    Article  Google Scholar 

  • Sultana, S., Rafiuddin, K. M. Z., Umar, K., and Muneer, M., 2013. Electrical, thermal, photocatalytic and antibacterial studies of metallic oxide nanocomposite doped polyaniline. Journal of Materials Science & Technology, 29(9): 795–800.

    Article  Google Scholar 

  • Thangamani, J. G., and Pasha, S. K. K., 2021. Hydrothermal synthesis of copper (II) oxide-nanoparticles with highly enhanced BTEX gas sensing performance using chemiresistive sensor. Chemosphere, 277: 130237.

    Article  Google Scholar 

  • Vajda, M., Ursu, D., Duteanu, N., and Miclau, M., 2020. Low lying valence band edge materials based on copper oxide for tandem dye-sensitized solar cells. Materials Letters, 275: 128151.

    Article  Google Scholar 

  • Wang, H., Luo, Y. Y., Liu, B., Gao, L., and Duan, G. T., 2021. CuO nanoparticle loaded ZnO hierarchical heterostructure to boost H2S sensing with fast recovery. Sensors and Actuators B: Chemical, 338: 129806.

    Article  Google Scholar 

  • Yadav, M. S., Sinha, A. K., Singh, M. N., and Kumar, A., 2021. Electrochemical study of copper oxide and activated charcoal based nanocomposite electrode for supercapacitor. Materials Today: Proceedings, 46: 5722–5729.

    Google Scholar 

Download references

Acknowledgements

The authors thank the support of the National Key Research and the Development Project (No. 2019YFC0312 103), and the Open Fund of Shandong Key Laboratory of Corrosion Science (No. KLCS201905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Hou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, J., Ye, Y. Design of Copper Oxide Nanosheets-Loaded Zeolite with Efficient Inhibition of Marine Bacteria. J. Ocean Univ. China 21, 1237–1243 (2022). https://doi.org/10.1007/s11802-022-5240-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-5240-7

Key words

Navigation