Skip to main content
Log in

Potential Distribution of Seagrass Meadows Based on the MaxEnt Model in Chinese Coastal Waters

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Seagrass meadows are generally diverse in China and have become important ecosystem with essential functions. However, the seagrass distribution across the seawaters of China has not been evaluated, and the magnitude and direction of changes in seagrass meadows remain unclear. This study aimed to provide a nationwide seagrass distribution map and explore the dynamic changes in seagrass population under global climate change. Simulation studies were performed using the modeling software MaxEnt with 58961 occurrence records and 27 marine environmental variables to predict the potential distribution of seagrasses and calculate the area. Seven environmental variables were excluded from the modeling processes based on a correlation analysis to ensure predicted suitability. The predicted area was 790.09 km2, which is much larger than the known seagrass distribution in China (87.65 km2). By 2100, the suitable habitat of seagrass will shift northwest and increase to 923.62 km2. Models of the sum of the individual family under-predicted the national distribution of seagrasses and consistently showed a downward trend in the future. Out of all environmental variables, physical parameters (e.g., depth, land distance, and sea surface temperature) contributed the most in predicting seagrass distributions, and nutrients (e.g., nitrate, phosphate) ranked among the key influential predictors for habitat suitability in our study area. This study is the first effort to fill a gap in understanding the distribution of seagrasses in China. Further studies using modeling and biological/ecological approaches are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M. P., Koh, E. J., Vilas, M. P., Collier, C. J., Lambert, V. M., Sisson, S. A., et al., 2020. Predicting seagrass decline due to cumulative stressors. Environmental Modelling & Software, 130: 104717.

    Article  Google Scholar 

  • Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., and De Clerck, O., 2018. Bio-ORACLE v2.0: Extending marine data layers for bioclimatic modelling. Global Ecology and Biogeography, 27(3): 277–284.

    Article  Google Scholar 

  • Basher, Z., Bowden, D. A., and Costello, M. J., 2018. GMED: Global Marine Environment Datasets for environment visualisation and species distribution modelling. Earth System Science Data Discussions, 2018: 1–62.

    Google Scholar 

  • Bittner, R. E., Roesler, E. L., and Barnes, M. A., 2020. Using species distribution models to guide seagrass management. Estuarine, Coastal and Shelf Science, 240: 106790.

    Article  Google Scholar 

  • Chefaoui, R. M., Duarte, C. M., and Serrão, E. A., 2018. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Global Change Biology, 24(10): 4919–4928.

    Article  Google Scholar 

  • Cullen-Unsworth, L. C., and Unsworth, R., 2018. A call for seagrass protection. Science, 361(6401): 446–448.

    Article  Google Scholar 

  • de la Hoz, C. F., Ramos, E., Puente, A., and Juanes, J. A., 2019. Temporal transferability of marine distribution models: The role of algorithm selection. Ecological Indicators, 106: 105499.

    Article  Google Scholar 

  • Duarte, C. M., Losada, I. J., Hendriks, I. E., Mazarrasa, I., and Marbà, N., 2013. The role of coastal plant communities for climate change mitigation and adaptation. Nature Climate Change, 3(11): 961–968.

    Article  Google Scholar 

  • Edwards, A. J., 2021. Impact of climatic change on coral reefs, mangroves, and tropical seagrass ecosystems. In: Climate Change: Impact on Coastal Habitation. Eisma, D., ed., CRC Press, Boca Raton, 209–234.

    Chapter  Google Scholar 

  • Fernandez, M., Yesson, C., Gannier, A., Miller, P. I., and Azevedo, J. M., 2017. The importance of temporal resolution for niche modelling in dynamic marine environments. Journal of Biogeography, 44(12): 2816–2827.

    Article  Google Scholar 

  • Ferrari, R., Malcolm, H., Neilson, J., Lucieer, V., Jordan, A., Ingleton, T., et al., 2018. Integrating distribution models and habitat classification maps into marine protected area planning. Estuarine, Coastal and Shelf Science, 212: 40–50.

    Article  Google Scholar 

  • Forney, K. A., Ferguson, M. C., Becker, E. A., Fiedler, P. C., Redfern, J. V., Barlow, J., et al., 2012. Habitat-based spatial models of cetacean density in the eastern Pacific Ocean. Endangered Species Research, 16(2): 113–133.

    Article  Google Scholar 

  • Franssen, S. U., Gu, J., Bergmann, N., Winters, G., Klostermeier, U. C., Rosenstiel, P., et al., 2011. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proceedings of the National Academy of Sciences of the United States of America, 108(48): 19276–19281.

    Article  Google Scholar 

  • Global Biodiversity Information Facility (GBIF), 2017. Accessed at http://www.gbif.org/species (in 2020).

  • Gumusay, M. U., Bakirman, T., Tuney Kizilkaya, I., and Aykut, N. O., 2019. A review of seagrass detection, mapping and monitoring applications using acoustic systems. European Journal of Remote Sensing, 52(1): 1–29.

    Article  Google Scholar 

  • Hastings, R. A., Rutterford, L. A., Freer, J. J., Collins, R. A., Simpson, S. D., and Genner, M. J., 2020. Climate change drives poleward increases and equatorward declines in marine species. Current Biology, 30(8): 1572–1577.

    Article  Google Scholar 

  • Horton, T., Kroh, A., Ahyong, S., Bailly, N., Boyko, C. B., Brandão, S. N., et al., 2020. World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2020-09-25.

  • Houngnandan, F., Kéfi, S., and Deter, J., 2020. Identifying key-conservation areas for Posidonia oceanica seagrass beds. Biological Conservation, 247: 108546.

    Article  Google Scholar 

  • Jayathilake, D. R., and Costello, M. J., 2018. A modelled global distribution of the seagrass biome. Biological Conservation, 226: 120–126.

    Article  Google Scholar 

  • Jiang, Z., Cui, L., Liu, S., Zhao, C., Wu, Y., Chen, Q., et al., 2020. Historical changes in seagrass beds in a rapidly urbanizing area of Guangdong Province: Implications for conservation and management. Global Ecology and Conservation, 22: e01035.

    Article  Google Scholar 

  • Kendrick, G. A., Orth, R. J., Statton, J., Hovey, R., Ruiz Montoya, L., Lowe, R. J., et al., 2017. Demographic and genetic connectivity: The role and consequences of reproduction, dispersal and recruitment in seagrasses. Biological Reviews, 92(2): 921–938.

    Article  Google Scholar 

  • Krause-Jensen, D., Duarte, C. M., Sand-Jensen, K., and Carstensen, J., 2021. Century-long records reveal shifting challenges to seagrass recovery. Global Change Biology, 27(3): 563–575.

    Article  Google Scholar 

  • Larkum, A. W., Waycott, M., and Conran, J. G., 2018. Evolution and biogeography of seagrasses. In: Seagrasses of Australia. Springer, Cham, 3–29.

    Chapter  Google Scholar 

  • Leiva-Dueñas, C., Cortizas, A. M., Piñeiro-Juncal, N., Díaz-Almela, E., Garcia-Orellana, J., and Mateo, M. A., 2021. Long-term dynamics of production in western Mediterranean seagrass meadows: Trade-offs and legacies of past disturbances. Science of the Total Environment, 754: 142117.

    Article  Google Scholar 

  • Martínez, B., Radford, B., Thomsen, M. S., Connell, S. D., Carreño, F., Bradshaw, C. J., et al., 2018. Distribution models predict large contractions of habitat-forming seaweeds in response to ocean warming. Diversity and Distributions, 24(10): 1350–1366.

    Article  Google Scholar 

  • McKenzie, L. J., Nordlund, L. M., Jones, B. L., Cullen-Unsworth, L. C., Roelfsema, C., and Unsworth, R. K., 2020. The global distribution of seagrass meadows. Environmental Research Letters, 15(7): 074041.

    Article  Google Scholar 

  • Meng, W., Feagin, R. A., Hu, B., He, M., and Li, H., 2019. The spatial distribution of blue carbon in the coastal wetlands of China. Estuarine, Coastal and Shelf Science, 222: 13–20.

    Article  Google Scholar 

  • Nguyen, H. M., Ralph, P. J., Marín-Guirao, L., Pernice, M., and Procaccini, G., 2021. Seagrasses in an era of ocean warming: A review. Biological Reviews, 96(5): 2009–2030.

    Article  Google Scholar 

  • Olsen, J. L., Rouzé, P., Verhelst, B., Lin, Y. C., Bayer, T., Collen, J., et al., 2016. The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature, 530(7590): 331–335.

    Article  Google Scholar 

  • Olsen, Y. S., Collier, C., Ow, Y. X., and Kendrick, G. A., 2018. Global warming and ocean acidification: Effects on Australian seagrass ecosystems. In: Seagrasses of Australia. Springer, Cham, 705–742.

    Chapter  Google Scholar 

  • Perry, D., Staveley, T., Deyanova, D., Baden, S., Dupont, S., Hernroth, B., et al., 2019. Global environmental changes negatively impact temperate seagrass ecosystems. Ecosphere, 10(12): e02986.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., and Schapire, R. E., 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4): 231–259.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E., and Blair, M. E., 2017. Opening the black box: An open-source release of Maxent. Ecography, 40(7): 887–893.

    Article  Google Scholar 

  • Rangel, T. F., Edwards, N. R., Holden, P. B., Diniz-Filho, J. A. F., Gosling, W. D., Coelho, M. T. P., et al., 2018. Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 361(6399): eaar5452.

    Article  Google Scholar 

  • Schultz, S. T., 2008. Seagrass monitoring by underwater videography: Disturbance regimes, sampling design, and statistical power. Aquatic Botany, 88(3): 228–238.

    Article  Google Scholar 

  • Short, F. T., Coles, R., Fortes, M. D., Victor, S., Salik, M., Isnain, I., et al., 2014. Monitoring in the Western Pacific region shows evidence of seagrass decline in line with global trends. Marine Pollution Bulletin, 83(2): 408–416.

    Article  Google Scholar 

  • Short, F. T., Kosten, S., Morgan, P. A., Malone, S., and Moore, G. E., 2016. Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, 135: 3–17.

    Article  Google Scholar 

  • Short, F. T., Polidoro, B., Livingstone, S. R., Carpenter, K. E., Bandeira, S., Bujang, J. S., et al., 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation, 144(7): 1961–1971.

    Article  Google Scholar 

  • Staehr, P. A., Göke, C., Holbach, A. M., Krause-Jensen, D., Timmermann, K., Upadhyay, S., et al., 2019. Habitat model of eelgrass in Danish coastal waters: Development, validation and management perspectives. Frontiers in Marine Science, 6: 175.

    Article  Google Scholar 

  • Stankovic, M., Hayashizaki, K. I., Tuntiprapas, P., Rattanachot, E., and Prathep, A., 2021. Two decades of seagrass area change: Organic carbon sources and stock. Marine Pollution Bulletin, 163: 111913.

    Article  Google Scholar 

  • Telesca, L., Belluscio, A., Criscoli, A., Ardizzone, G., Apostolaki, E. T., Fraschetti, S., et al., 2015. Seagrass meadows (Posidonia oceanica) distribution and trajectories of change. Scientific Reports, 5(1): 1–14.

    Article  Google Scholar 

  • Townhill, B. L., Tinker, J., Jones, M., Pitois, S., Creach, V., Simpson, S. D., et al., 2018. Harmful algal blooms and climate change: Exploring future distribution changes. ICES Journal of Marine Science, 75(6): 1882–1893.

    Article  Google Scholar 

  • Trisos, C. H., Merow, C., and Pigot, A. L., 2020. The projected timing of abrupt ecological disruption from climate change. Nature, 580(7804): 496–501.

    Article  Google Scholar 

  • Unsworth, R. K., McKenzie, L. J., Collier, C. J., Cullen-Unsworth, L. C., Duarte, C. M., Eklöf, J. S., et al., 2019. Global challenges for seagrass conservation. Ambio, 48(8): 801–815.

    Article  Google Scholar 

  • Unsworth, R. K., McKenzie, L. J., Nordlund, L. M., and Cullen-Unsworth, L. C., 2018. A changing climate for seagrass conservation?. Current Biology, 28(21): R1229–R1232.

    Article  Google Scholar 

  • Unsworth, R. K., Nordlund, L. M., and Cullen-Unsworth, L. C., 2019. Seagrass meadows support global fisheries production. Conservation Letters, 12(1): e12566.

    Article  Google Scholar 

  • Valle, M., Chust, G., del Campo, A., Wisz, M. S., Olsen, S. M., Garmendia, J. M., et al., 2014. Projecting future distribution of the seagrass Zostera noltii under global warming and sea level rise. Biological Conservation, 170: 74–85.

    Article  Google Scholar 

  • Wang, M., Zhang, H., and Tang, X., 2019. Growth characteristics of a restored Zostera marina population in the Shandong Peninsula, China: A case study. Journal of Sea Research, 144: 122–132.

    Article  Google Scholar 

  • Wang, M. X., Chen, X. Y., Zhang, J., Song, Y. H., and Yang, J., 2021. Biodiversity of Chordata in the Philippine Sea: A case study based on OBIS. Biodiversity Science, 29: 1481–1489.

    Article  Google Scholar 

  • Waycott, M., Duarte, C. M., Carruthers, T. J., Orth, R. J., Dennison, W. C., Olyarnik, S., et al., 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 106(30): 12377–12381.

    Article  Google Scholar 

  • Wernberg, T., Bennett, S., Babcock, R. C., De Bettignies, T., Cure, K., Depczynski, M., et al., 2016. Climate-driven regime shift of a temperate marine ecosystem. Science, 353(6295): 169–172.

    Article  Google Scholar 

  • Xu, S., Qiao, Y., Xu, S., Yue, S., Zhang, Y., Liu, M., et al., 2021. Diversity, distribution and conservation of seagrass in coastal waters of the Liaodong Peninsula, North Yellow Sea, northern China: Implications for seagrass conservation. Marine Pollution Bulletin, 167: 112261.

    Article  Google Scholar 

  • Yu, S., Liu, S., Jiang, K., Zhang, J., Jiang, Z., Wu, Y., et al., 2018. Population genetic structure of the threatened tropical seagrass Enhalus acoroides in Hainan Island, China. Aquatic Botany, 150: 64–70.

    Article  Google Scholar 

  • Zhang, X., Lin, H., Song, X., Xu, S., Yue, S., Gu, R., et al., 2019. A unique meadow of the marine angiosperm Zostera japonica, covering a large area in the turbid intertidal Yellow River Delta, China. Science of the Total Environment, 686: 118–130.

    Article  Google Scholar 

  • Zheng, F., Qiu, G., Fan, H., and Zhang, W., 2013. Diversity, distribution and conservation of Chinese seagrass species. Biodiversity Science, 21(5): 517.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1408405-02), the National Natural Science Foundation of China (No. 6207070555), and the Youth Foundation of the Shandong Academy of Sciences (No. 2019QN0026).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Wang, Y., Liu, G. et al. Potential Distribution of Seagrass Meadows Based on the MaxEnt Model in Chinese Coastal Waters. J. Ocean Univ. China 21, 1351–1361 (2022). https://doi.org/10.1007/s11802-022-5006-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-5006-2

Key words

Navigation