Skip to main content
Log in

Intensity of Level Ice Simulated with the CICE Model for Oil-Gas Exploitation in the Southern Kara Sea, Arctic

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Sea ice is the predominant natural threat to marine structures and oil-gas exploitation in the Arctic. However, for ice-resistant structural design, long-term successive level ice thickness measurements are still lacking. To fill this gap in the southern Kara Sea, the Los Alamos Sea Ice Model (CICE) is applied to achieve better simulation at the local and regional scales. Based on the validation against ice thickness observations in March and April in 1980–1986, the statistical root-mean-square error is determined to be less than 0.2 m. Then, based on the hindcast data, the spatiotemporal distributions of level ice thickness are analyzed annually, seasonally, and monthly, with thicker level ice of 1.2–1.5 m in spring and large ice-free zones in September and October. For floating platforms, a novel ice grade criterion with five classifications, namely, excellent, good, moderate, severe, and catastrophic, is proposed. The first two grades are most suitable for offshore activities, particularly from August to October, and the moderate grade is acceptable if with ice-resistant protections. Furthermore, hostile ice conditions are discussed in terms of the generalized extreme value distribution. The statistics reveal that at a return period of 100 yr, extreme level ice is primarily between 0.6 m and 1.0 m in December. The present investigation could be a useful reference for a feasibility study of the potential risk analysis and ice-resistant operation of oil-gas exploitation in the Arctic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ahn, J., Hong, S., Cho, J., Lee, Y. W., and Lee, H., 2014. Statistical modeling of sea ice concentration using satellite imagery and climate reanalysis data in the Barents and Kara Seas, 1979–2012. Remote Sensing, 6(6): 5520–5540.

    Article  Google Scholar 

  • Arhipov, B. V., Solbakov, V. V., and Tsvetsinsky, A. S., 1996. Hydrodynamic and ice model or the south-western part of the Kara Sea. The 6th International Offshore and Polar Engineering Conference. Los Angeles, California, ISOPE-I-96-153.

  • Ashton, G. D., 1986. River and Lake Ice Engineering. Water Resources Publication, Highlands Ranch, Colorado, 57–60.

    Google Scholar 

  • Bekker, A. T., Sabodash, O. A., Shpagin, K. D., and Krikunova, Y. A., 2015. Analysis of technical solutions of exploration platforms in shallow waters for the Russian Arctic. The 25th International Ocean and Polar Engineering Conference. Kona, Hawaii, ISOPE-I-15-195.

  • Belchansky, G. I., Mordvintsev, I. N., Ovchinnikov, G. K., and Douglas, D. C., 1995. Assessing trends in Arctic sea-ice distribution in the Barents and Kara Seas using the Kosmos-Okean satellite series. Polar Record, 31(177): 129–134.

    Article  Google Scholar 

  • Birch, R., Fissel, D., Melling, H., Vaudrey, K., Lamb, W., Schaudt, K., et al., 2000. Ice-profiling sonar upward looking sonar provides over-winter records of ice thickness and ice keel depths off Sakhalin Island, Russia. Sea Technology, 41(8): 48–54.

    Google Scholar 

  • Bitz, C. M., and Lipscomb, W. H., 1999. An energy-conserving thermodynamic model of sea ice. Journal of Geophysical Research, 104(C7): 15669–15678.

    Article  Google Scholar 

  • Borodachev, B. E., and Shilnikov, V. I., 2002. The History of Aerial Ice Reconnaissance in the Arctic and Ice-Covered Seas of Russia, 1914–1993. Gidrometeoizdat Publishing House, St. Petersburg, 441pp (in Russian).

    Google Scholar 

  • Bouillon, S., Fichefet, T., Legat, V., and Madec, G., 2013. The elastic-viscous-plastic method revisited. Ocean Modelling, 71: 2–12.

    Article  Google Scholar 

  • Budikova, D., 2009. Role of Arctic sea ice in global atmospheric circulation: A review. Global and Planetary Change, 68(3): 149–163.

    Article  Google Scholar 

  • Bushuk, M., and Giannakis, D., 2017. The seasonality and interannual variability of Arctic sea ice reemergence. Journal of Climate, 30(12): 4657–4676.

    Article  Google Scholar 

  • Cavalieri, D. J., and Parkinso, C. L., 2012. Arctic sea ice variability and trends, 1979–2010. The Cryosphere, 6(4): 881–889.

    Article  Google Scholar 

  • Chai, W., Leira, B. J., Høyland, K. V., Sinsabvarodom, C., and Yu, Z., 2021. Statistics of thickness and strength of first-year ice along the northern sea route. Journal of Marine Science and Technology, 26(2): 331–343.

    Article  Google Scholar 

  • Cheng, B., Mäkynen, M., Similä, M., Rontu, L., and Vihma, T., 2013. Modelling snow and ice thickness in the coastal Kara Sea, Russian Arctic. Annals of Glaciology, 54(62): 105–113.

    Article  Google Scholar 

  • Chu, M., Shi, X., Fang, Y., Zhang, L., Wu, T., and Zhou, B., 2019. Impacts of SIS and CICE as sea ice components in BCC_CSM on the simulation of the Arctic climate. Journal of Ocean University of China, 18(3): 553–562.

    Article  Google Scholar 

  • Coles, S., 2001. An Introduction to Statistical Modeling of Extreme Values. Springer, London, 45–72.

    Book  Google Scholar 

  • Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., et al., 2006. The community climate system model version 3 (CCSM3). Journal of Climate, 19(11): 2122–2143.

    Article  Google Scholar 

  • Divine, D. V., Korsnes, R., and Makshtas, A. P., 2004. Temporal and spatial variation of shore-fast ice in the Kara Sea. Continental Shelf Research, 24(15): 1717–1736.

    Article  Google Scholar 

  • Duan, C., Dong, S., and Wang, Z., 2020. Mathematical modeling of Arctic sea ice freezing and melting based on nonlinear growth theory. Continental Shelf Research, 210: 104278.

    Article  Google Scholar 

  • Duan, C., Dong, S., Wang, Z., and Tao, S., 2018. Variability Characteristics of winter sea ice in the Barents Sea based on a statistical approach. The 28th International Ocean and Polar Engineering Conference. Sapporo, ISOPE-I-18-146.

  • Duan, C., Dong, S., Xie, Z., and Wang, Z., 2019. Temporal variability and trends of sea ice in the Kara Sea and their relationship with atmospheric factors. Polar Science, 20: 136–147.

    Article  Google Scholar 

  • Efimov, Y. O., Kornishin, K. A., Sochnev, O. Y., Mironov, Y. U., and Porubaev, V. S., 2020. Evaluation of exploration drilling scenarios in the southwestern part of the Kara Sea. The 30th International Ocean and Polar Engineering Conference. Virtual, ISOPE-I-20-1272.

  • Feltham, D. L., Untersteiner, N., Wettlaufer, J. S., and Worster, M. G., 2006. Sea ice is a mushy layer. Geophysical Research Letters, 33(14): L14501.

    Article  Google Scholar 

  • Flocco, D., Schroeder, D., Feltham, D. L., and Hunke, E. C., 2012. Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007. Journal of Geophysical Research: Oceans, 117(C9): C09032.

    Article  Google Scholar 

  • Gautier, D. L., Bird, K. J., Charpentier, R. R., Grantz, A., Houseknecht, D. W., Klett, T. R., et al., 2009. Assessment of undiscovered oil and gas in the Arctic. Science, 324(5931): 1175–1179.

    Article  Google Scholar 

  • Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G., Chassignet, E. P., et al., 2009. Coordinated ocean-ice reference experiments (COREs). Ocean Modelling, 26(1–2): 1–46.

    Article  Google Scholar 

  • Gudmestad, O. T., 2018. Technological challenges for sustainable use of the Arctic Seas. International Journal of Offshore and Polar Engineering, 28(4): 337–341.

    Article  Google Scholar 

  • Haas, C., Hendricks, S., Eicken, H., and Herber, A., 2010. Synoptic airborne thickness surveys reveal state of Arctic sea ice cover. Geophysical Research Letters, 37(9): L09501.

    Article  Google Scholar 

  • Hunke, E. C., 2001. Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. Journal of Computational Physics, 170(1): 18–38.

    Article  Google Scholar 

  • Hunke, E. C., 2010. Thickness sensitivities in the CICE sea ice model. Ocean Modelling, 34(3–4): 137–149.

    Article  Google Scholar 

  • Hunke, E. C., and Bitz, C. M., 2009. Age characteristics in a multidecadal Arctic sea ice simulation. Journal of Geophysical Research: Oceans, 114(C8): C08013.

    Article  Google Scholar 

  • Hunke, E. C., and Dukowicz, J. K., 1997. An elastic-viscous-plastic model for sea ice dynamics. Journal of Physical Oceanography, 27(9): 1849–1867.

    Article  Google Scholar 

  • Hunke, E. C., and Dukowicz, J. K., 2002. The elastic-viscous-plastic sea ice dynamics model in general orthogonal curvilinear coordinates on a sphere-Incorporation of metric terms. Monthly Weather Review, 130(7): 1848–1865.

    Article  Google Scholar 

  • Hunke, E. C., and Dukowicz, J. K., 2003. The sea ice momentum equation in the free drift regime. Technical report LA-UR-03–2219. Los Alamos National Laboratory, Los Alamos, New Mexico, 50–55.

    Google Scholar 

  • Hunke, E. C., and Holland, M. M., 2007. Global atmospheric forcing data for Arctic ice-ocean modeling. Journal of Geophysical Research: Oceans, 112(C4): C04S14.

    Article  Google Scholar 

  • Hunke, E. C., Lipscomb, W. H., Turner, A. K., Jeffery, N., and Elliott, S., 2015. CICE: The Los Alamos Sea Ice Model Documentation and Software User’s Manual Version 5.1 LA-CC-06-012. Los Alamos, New Mexico, USA.

  • Huntemann, M., Heygster, G., Kaleschke, L., Krumpen, T., Mäkynen, M., and Drusch, M., 2014. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations. The Cryosphere, 8: 439–451.

    Article  Google Scholar 

  • International Organization for Standardization, 2010. ISO 19906: 2010, petroleum and natural gas industries — Arctic offshore structures. International Standardization for Organization, 139–140.

  • Karulin, E. B., and Karulina, M. M., 2010. Performance studies for technological complex platform ‘Prirazlomnaya’—Moored tanker in ice conditions. The 9th ISOPE Pacific/Asia Offshore Mechanics Symposium. Busan, ISOPE-P-10-005.

  • Kovalev, S. M., Smirnov, V. N., Borodkin, V. A., Shushlebin, A. I., Kolabutin, N. V., Kornishin, K. A., et al., 2019. Physical and mechanical characteristics of sea ice in the Kara and Laptev Seas. International Journal of Offshore and Polar Engineering, 29(4): 369–374.

    Article  Google Scholar 

  • Kutvitskaya, N. B., and Ryazanov, A. V., 2013. Engineering protection for permanent offshore platform against ice impact in the Arctic shelf. The SPE Arctic and Extreme Environments Technical Conference and Exhibition. Moscow, SPE-166843-MS.

  • Lipscomb, W. H., 1998. Modeling the thickness distribution of Arctic sea ice. PhD thesis. Department of Atmospheric Sciences, University of Washington.

  • Lipscomb, W. H., 2001. Remapping the thickness distribution in sea ice models. Journal of Geophysical Research: Oceans, 106(C7): 13989–14000.

    Article  Google Scholar 

  • Marchenko, N., 2014. Northern sea route: Modern state and challenges. The 33rd International Conference on Ocean, Offshore and Arctic Engineering. San Francisco, California, OMAE 2014–23626.

    Google Scholar 

  • Matishov, G. G., Dzhenyuk, S. L., Moiseev, D. V., and Zhichki, A. P., 2014. Pronounced anomalies of air, water, ice conditions in the Barents and Kara Seas, and the Sea of Azov. Oceanologia, 56(3): 445–460.

    Article  Google Scholar 

  • Maykut, G. A., and Untersteiner, N., 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76(6): 1550–1575.

    Article  Google Scholar 

  • Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M., 2014. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nature Geoscience, 7(12): 869–873.

    Article  Google Scholar 

  • Nakanowatari, T., Inoue, J., Sato, K., Bertino, L., Xie, J., Matsueda, M., et al., 2018. Medium-range predictability of early summer sea ice thickness distribution in the East Siberian Sea based on the TOPAZ4 ice-ocean data assimilation system. The Cryosphere, 12(6): 2005–2020.

    Article  Google Scholar 

  • Onarheim, I. H., and Årthun, M., 2017. Toward an ice-free Barents Sea. Geophysical Research Letters, 44(16): 8387–8395.

    Article  Google Scholar 

  • Ricker, R., Hendricks, S., Helm, V., Skourup, H., and Davidson, M., 2014. Sensitivity of CryoSat-2 Arctic sea-ice freeboard and thickness on radar-waveform interpretation. The Cryosphere, 8(4): 1607–1622.

    Article  Google Scholar 

  • Rodrigues, J., 2008. The rapid decline of the sea ice in the Russian Arctic. Cold Regions Science and Technology, 54(2): 124–142.

    Article  Google Scholar 

  • Romanov, I. P., 2004. Morphometric characteristics of ice and snow in the Arctic Basin: Aircraft landing observations from the former Soviet Union, 1928–1989. Version 1. National Snow and Ice Data Center, Boulder, USA.

    Google Scholar 

  • Semtner Jr., A. J., 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6(3): 379–389.

    Article  Google Scholar 

  • Similä, M., Mäkynen, M., Cheng, B., and Rinne, E., 2013. Multisensor data and thermodynamic sea-ice model based sea-ice thickness chart with application to the Kara Sea, Arctic Russia. Annals of Glaciology, 54(62): 241–252.

    Article  Google Scholar 

  • Steele, M., Morley, R., and Ermold, W., 2001. PHC: A global ocean hydrography with a high-quality Arctic Ocean. Journal of Climate, 14(9): 2079–2087.

    Article  Google Scholar 

  • Thorndike, A. S., Rothrock, D. A., Maykut, G. A., and Colony, R., 1975. The thickness distribution of sea ice. Journal of Geophysical Research, 80(33): 4501–4513.

    Article  Google Scholar 

  • Timco, G. W., and Weeks, W. F., 2010. A review of the engineering properties of sea ice. Cold Regions Science and Technology, 60(2): 107–129.

    Article  Google Scholar 

  • Tsamados, M., Feltham, D. L., and Wilchinsky, A. V., 2013. Impact of a new anisotropic rheology on simulations of Arctic sea ice. Journal of Geophysical Research: Oceans, 118(1): 91–107.

    Article  Google Scholar 

  • Urrego-Blanco, J. R., Urban, N. M., Hunke, E. C., Turner, A. K., and Jeffery, N., 2016. Uncertainty quantification and global sensitivity analysis of the Los Alamos sea ice model. Journal of Geophysical Research: Oceans, 121(4): 2709–2732.

    Article  Google Scholar 

  • Wang, C., and Su, J., 2015. Comparison of melt pond parameterization schemes in CICE model. Haiyang Xuebao, 37(11): 41–56 (in Chinese with English abstract).

    Google Scholar 

  • Wang, H., Zhang, L., Chu, M., and Hu, S., 2020. Advantages of the latest Los Alamos Sea-Ice Model (CICE): Evaluation of the simulated spatiotemporal variation of Arctic sea ice. Atmospheric and Oceanic Science Letters, 13(2): 113–120.

    Article  Google Scholar 

  • Wang, S., 2017. Present situation and development prospect of oil and gas resources in Russian Arctic continental shelf. China Mining News, 06–09 (004) (in Chinese).

  • Wilchinsky, A. V., and Feltham, D. L., 2006. Modelling the rheology of sea ice as a collection of diamond-shaped floes. Journal of Non-Newtonian Fluid Mechanics, 138(1): 22–32.

    Article  Google Scholar 

  • WMO (World Meteorological Organization), 1985. WMO Sea Ice Nomenclature. Supplement No. 4, WMO-No. 259, 145.

  • Wu, S., Zeng, Q., and Bi, X., 2015. Modeling of Arctic sea ice variability during 1948–2009: Validation of two versions of the Los Alamos sea ice model (CICE). Atmospheric and Oceanic Science Letters, 8(4): 215–219.

    Article  Google Scholar 

  • Xie, J., Bertino, L., Counillon, F., Lisæter, K. A., and Sakov, P., 2017. Quality assessment of the TOPAZ4 reanalysis in the Arctic over the period 1991–2013. Ocean Science, 13(1): 123–144.

    Article  Google Scholar 

  • Zhao, J., Zhong, W., Diao, Y., and Cao, Y., 2019. The rapidly changing Arctic and its impact on global climate. Journal of Ocean University of China, 18(3): 537–541.

    Article  Google Scholar 

  • Zubakin, G. K., Egorov, A. G., Ivanov, V. V., Lebedev, A. A., Buzin, I. V., and Eide, L. I., 2008. Formation of the severe ice conditions in the southwestern Kara Sea. The 18th International Offshore and Polar Engineering Conference. Vancouver, ISOPE-I-08-187.

Download references

Acknowledgements

The study is supported by the National Key Research and Development Program of China (No. 2016YFC0303401), the National Natural Science Foundation of China (No. 51779236), and the National Natural Science Foundation of China—Shandong Joint Fund (No. U1706226).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, C., Wang, Z. & Dong, S. Intensity of Level Ice Simulated with the CICE Model for Oil-Gas Exploitation in the Southern Kara Sea, Arctic. J. Ocean Univ. China 21, 1099–1108 (2022). https://doi.org/10.1007/s11802-022-4914-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-022-4914-5

Key words

Navigation