Skip to main content
Log in

Response of Terrigenous Sediment Input to Sea Level Change and East Asian Monsoon Evolution Since 30kyr in the Southwestern Taiwan Basin

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The compositions of grain size, clay minerals, and geochemical elements in core sediments (TS4) from the southwestern Taiwan Basin (South China Sea) were investigated to assess the response of terrigenous sediment input to sea level change and the East Asian monsoon evolution since 30 kyr. The chronology was discussed based on foraminiferal AMS14C dates. Our results indicated that rivers in Taiwan have been the major sediment contributors since 30 kyr, followed by the Pearl River; and Luzon Island contribute little sediments to the southwestern Taiwan Basin. In this study, we reconstructed the variations in terrigenous sediment input by using the proxies such as Al2O3 (%), F1 score, and TiO2/CaO. The F1 score can be used to indicate the flux of terrigenous sediments. The contribution of Taiwanese rivers and the Pearl River were evaluated by using the value of (illite + chlorite)/kaolinite. The variations of Al2O3 (%), F1 score, and TiO2/CaO values along the core were clearly correlated to the evolution of the East Asian summer monsoon since 30 kyr. Based on these records, we recognized three evolutionary stages of terrigenous sediment input in the southwestern Taiwan Basin. During stage I (29–24 kyr), the input of terrigenous sediments continued to increase. During stage II (24–11.5 kyr), the sediment input decreased at first and then increased, with the lowest value during the last glacial period (21–17kyr). Terrigenous sediment input during stage III (11.5 kyr -) showed the decreasing first and then increasing trends, generally higher than those in the first and second stages. The variations of terrigenous sediment input in the study area corresponded well with the evolution of the East Asian summer monsoon since 30kyr. Increased terrigenous sediment input during 4–1.8 kyr was suggested to be caused by the enhanced ENSO activity. Sea level change does not alter the overall trend of terrigenous sediment input, but does change the relative contributions of rivers in Taiwan and the Pearl River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • An, Z. S., Porter, S. C., Kutzbach, J. E., Wu, X. H., Wang, S. M., Liu, X. D., Li, X. Q., and Zhou, W. J., 2000. Asynchronous Holocene Optimum of the East Asian monsoon. Quaternary Science Reviews, 19: 743–762, DOI: https://doi.org/10.1016/s0277-3791(99)00031-1.

    Article  Google Scholar 

  • Berger, A., and Loutre, M. F., 1991. Insolation values for the climate of the last 10 million years. Quaternary Science Reviews, 10: 297–317, DOI: https://doi.org/10.1016/0277-3791(91)90033-Q.

    Article  Google Scholar 

  • Biscaye, P. E., 1965. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans. Geological Society of America Bulletin, 76 (7): 803–832.

    Article  Google Scholar 

  • Boulay, S., Colin, C., Trentesaux, A., Frank, N., and Liu, Z. F., 2005. Sediment sources and East Asian monsoon intensity over the last 450 ky. Mineralogical and geochemical investigations on South China Sea sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 228 (3–4): 260–277, DOI: https://doi.org/10.1016/j.palaeo.2005.06.005.

    Article  Google Scholar 

  • Cai, G. Q., Peng, X. C., Chen, H. J., Zhang, J. P., and Zhang, Y. L., 2012. The component characteristics and paleoenvironmental significances for sediments in core 83PC from the Xisha Trough, South China Sea. Marine Geology and Quaternary Geology, 1: 81–88 (in Chinese with English abstract).

    Google Scholar 

  • Chang, F. M., Li, T., Xiong, Z., and Xu, Z., 2015. Evidence for sea-level and monsoonal driven variations in terrigenous input to the northern East China Sea during the last 24.3 ka. Paleoceanography, 30: 642–658.

    Article  Google Scholar 

  • Chen, G. T. J., Jiang, Z. H., and Wu, M. C., 2003. Spring heavy rain events in Taiwan during warm episodes and the associated large-scale conditions. Monthly Weather Review, 131: 1173–1188.

    Article  Google Scholar 

  • Chen, H. F., Yeh, P. Y., Song, S. R., Hsu, S. C., Yang, T. N., Wang, Y., Chi, Z., Lee, T. Q., Chen, M. T., Cheng, C. L., Zou, J., and Chang, Y. P., 2013. The Ti/Al molar ratio as a new proxy for tracing sediment transportation processes and its application in Aeolian events and sea level change in East Asia. Journal of Asian Earth Science, 73: 31–38.

    Article  Google Scholar 

  • Clift, P. D., Wan, S. M., and Blusztajn, J., 2014. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea: A review of competing proxies. Earth Science Reviews, 130: 86–102.

    Article  Google Scholar 

  • Colin, C., Siani, G., Sicre, M. A., and Liu, Z., 2010. Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River Basin over the past 25,000 yr. Marine Geology, 271: 84–92.

    Article  Google Scholar 

  • Cui, Z., Schulz-Bull, D. E., Hou, Y., Xia, Z., and Waniek, J. J., 2016. Geochemical characteristics and provenance of Holocene sediments (core STAT22) in the Beibu Gulf, South China Sea. Journal of Coastal Research, 32 (5): 1105–1115, DOI: https://doi.org/10.2112/JCOASTRES-D-14-00238.1.

    Article  Google Scholar 

  • Cullers, R. L., Chaudhuri, S., Arnold, B., Lee, M., and Wolf, C. W., 1975. Rare earth distributions in clay minerals and in the clay-sized fraction of the lower Permian Havensville and Eskridge shales of Kansas and Oklahoma. Geochimica et Cosmochimica Acta, 39 (12): 1691–1703, DOI: https://doi.org/10.1016/0016-7037(75)90090-3.

    Article  Google Scholar 

  • Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M., Willett, S. D., Hu, J., and Horng, M., 2003. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426 (6967): 648–651, DOI: https://doi.org/10.1038/nature02150.

    Article  Google Scholar 

  • Deplazes, G., Lückge, A., Stuut, J. B., and Pätzold, J., 2014. Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations. Paleoceanography, 29 (2): 99–114.

    Article  Google Scholar 

  • Dou, Y. G., Yang, S. Y., Tang, M., Liu, Z. X., and Yu, H., 2011. Using biogenic components to decipher the terrigenous input and paleoenvironmental changes over last 28 ka on the middle Okinawa Trough. Quaternary Sciences, 2: 40–47 (in Chinese with English abstract).

    Google Scholar 

  • Esquevin, J., 1969. Influence de la composition chimique des illites sur leur cristallinité. Centre Recherche Elf Pau-SNPA, Bulletin, 3 (1): 147–153.

    Google Scholar 

  • Gagan, M. K., Hendy, E. J., Haberle, S. G., and Hantoro, W. S., 2004. Postglacial evolution of the Indo-Pacific Warm Pool and El Niño-Southern Oscillation. Quaternary International, 118–119: 127–143.

    Article  Google Scholar 

  • Guo, X, D., 1979. Sea level changes in China since the late Pleistocene. Scientia Geologica Sinica, 4: 47–58 (in Chinese with English abstract).

    Google Scholar 

  • Han, Y., Zhao, P., and Zhou, G. B., 2009. Modeling of impacts of regional vegetation change in China on East Asian summer rainfall under the background of the Last Glacial Maximum. Quaternary Sciences, 29 (6): 1071V1077.

    Google Scholar 

  • Hu, D. K., Böning, P., Köhler, C. M., Hillier, S., Pressling, N., Wan, S., Brumsack, H. J., and Clift, P. D., 2012. Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 kyr in the South China Sea. Chemical Geology, 326–327: 1–18, DOI: https://doi.org/10.1016/j.chemgeo.2012.07.024.

    Article  Google Scholar 

  • Huang, J., Li, A. C., and Wan, S. M., 2011. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope. Quaternary Research, 75: 734–744.

    Article  Google Scholar 

  • Huang, J., Li, A. C., Wan, S. M., Xu, F. J., and Meng, Q. Y., 2013. Terrigenous input to the northern slope of the South China Sea and its controlling factor since the last phase of the Last Glacial Maximum. Oceanologia et Limnologia Sinica, 44 (4): 882–889 (in Chinese with English abstract).

    Google Scholar 

  • Huang, J., Wan, S., Xiong, Z., Zhao, D., Liu, X., Li, A., and Li, T., 2016. Geochemical records of Taiwan-sourced sediments in the South China Sea linked to Holocene climate changes. Palaeogeography, Palaeoclimatology, Palaeoecology, 441: 871–881, DOI: https://doi.org/10.1016/j.palaeo.2015.10.036.

    Article  Google Scholar 

  • Huang, R. H., Xu, Y. H., Wang, P. F., and Zhou, L. T., 1998. The features of the catastrophic flood over the Changjiang River Basin during the summer of 1998 and cause exploration. Climatic and Environmental Research, 3 (4): 300–313 (in Chinese with English abstract).

    Google Scholar 

  • Jiang, Z. H., 2003. Large-scale circulation patterns associated with heavy spring rain events over Taiwan in strong ENSO and non-ENSO Years. Monthly Weather Review, 131: 1769–1782.

    Article  Google Scholar 

  • Jiwarungrueangkul, T., Liu, Z. F., and Zhao, Y. L., 2019. Terrigenous sediment input responding to sea level change and East Asian monsoon evolution since the last deglaciation in the southern South China Sea. Global and Planetary Change, 174: 127–137.

    Article  Google Scholar 

  • Krumm, S., and Buggisch, W., 1991. Sample preparation effects on illite crystallinity measurements: Grain size gradation and particle orientation. Metamorphic Geology, 9: 671–677.

    Article  Google Scholar 

  • Li, C. S., Shi, X. F., Gao, S. J., Chen, M. D., Liu, Y. G., Fang, X. S., Lv, H. H., Zou, J. J., Liu, S. F., and Qiao, S. Q., 2012. Clay mineral composition characteristics and material sources in Taiwan river sediments. Chinese Science Bulletin, 57: 169–177.

    Google Scholar 

  • Li, C. S., Shi, X. F., Gao, S. J., Liu, Y. G., Lyu, H. H., Zou, J. J., Liu, S. F., and Qiao, S. Q., 2013. Rare earth elements in finegrained sediments of major rivers from the high-standing island of Taiwan. Journal of Asian Earth Science, 69: 39–47, DOI: https://doi.org/10.1016/j.jseaes.2013.03.001.

    Article  Google Scholar 

  • Li, J. R., Liu, S. F., Feng, X. L., Sun, X. Q., and Shi, X. F., 2017. Major and trace element geochemistry of the mid-Bay of Bengal surface sediments: Implications for provenance. Acta Oceanologica Sinica, 36: 82–90.

    Article  Google Scholar 

  • Liao, M. G., Qin, Z., and Zhao, H., 1999. The impact of El Niño and La Niña phenomena on the global climate, Chinese climate and navigation. Navigation China, 45: 55–59.

    Google Scholar 

  • Liu, F., Yang, C. P., Chang, X. H., and Liao, Z. W., 2018. Sedimentary geochemistry properties of rare earth elements from the continental lower slope of the northeastern South China Sea over the last 20ka and its implication for provenance. Acta Oceanologica Sinica, 40 (9): 148–158 (in Chinese with English abstract).

    Google Scholar 

  • Liu, J. G., Xiang, R., Chen, M. H., Chen, Z., Yan, W., and Liu, F., 2011. Influence of the Kuroshio Current intrusion on depositional environment in the northern South China Sea: Evidence from surface sediment records. Marine Geology, 285: 59–68.

    Article  Google Scholar 

  • Liu, J. G., Xiang, R., Chen, Z., Chen, M. H., Yan, W., Zhang, L. L., and Chen, H., 2013. Sources, transport and deposition of surface sediments from the South China Sea. Deep Sea Research, 71: 92–102.

    Article  Google Scholar 

  • Liu, Z. F., Colin, C., Huang, W., Chen, Z., Trentesaux, A., and Chen, J. F., 2007. Clay minerals in the surface sediments of the Pearl River Basin and their contribution to South China Sea sediments. Chinese Science Bulletin, 52 (4): 448–456.

    Google Scholar 

  • Liu, Z. F., Colin, C., Li, X., Zhao, Y., Tuo, S., Chen, Z., Siringan, F. P., Liu, J. T., Huang, C. Y., You, C. F., and Huang, K. F., 2010a. Clay mineral distribution in surface sediments of the northeastern South China Sea and surrounding fluvial drainage basins: Source and transport. Marine Geology, 277: 48–60.

    Article  Google Scholar 

  • Liu, Z. F., Colin, C., Trentesaux, A., and Blamart, D., 2005. Clay mineral records of East Asian monsoon evolution during late Quaternary in the southern South China Sea. Science in China Series D-Earth Sciences, 48: 84–92.

    Article  Google Scholar 

  • Liu, Z. Y., Kutzbach, J., and Wu, L. X., 2000. Modeling climate shift of El Niño variability in the Holocene. Geophysical Research Letters, 27: 2265–2268.

    Article  Google Scholar 

  • Liu, Z. F., Li, X. J., Colin, C., and Ge, H. M., 2010b. A high-resolution clay mineralogical record in the northern South China Sea since the Last Glacial Maximum, and its time series provenance analysis. Chinese Science Bulletin, 55 (29): 4058–4068.

    Article  Google Scholar 

  • Liu, Z. F., Trentesaux, A., Clemens, S. C., Colin, C., Wang, P., Huang, B., and Boulay, S., 2003. Clay mineral assemblages in the northern South China Sea: Implications for East Asian monsoon evolution over the past 2 million years. Marine Geology, 201: 133–146.

    Article  Google Scholar 

  • Liu, Z. F., Tuo, S. T., Colin, C., Liu, J. T., Huang, C. Y., Selvaraj, K., Chen, C. T. A., Zhao, Y. L., Siringan, F. P., Boulay, S., and Chen, Z., 2008. Detrital fine-grained sediment contribution from Taiwan to the northern South China Sea and its relation to regional ocean circulation. Marine Geology, 255 (3–4): 149–155, DOI: https://doi.org/10.1016/j.margeo.2008.08.003.

    Article  Google Scholar 

  • Liu, Z. F., Zhao, Y., Colin, C., Siringan, F. P., and Wu, Q., 2009. Chemical weathering in Luzon, Philippines from clay mineralogy and major-element geochemistry of river sediments. Applied Geochemistry, 24: 2195–2205, DOI: https://doi.org/10.1016/j.apgeochem.2009.09.025.

    Article  Google Scholar 

  • Liu, Z. F., Zhao, Y. L., Colin, C., Stattegger, K., Wiesner, M. G., Huh, C., Zhang, Y., Li, X., and Li, Y., 2016. Source-to-sink transport processes of fluvial sediments in the South China Sea. Earth Science Reviews, 153: 238–273.

    Article  Google Scholar 

  • Liu, Z. F., Zhao, Y. L., Wang, Y. J., and Chen, Q., 2017. Clay mineralogical proxy of the East Asian monsoon evolution during the Quaternary in the South China Sea. Quaternary Science, 37 (5): 921–933 (in Chinese with English abstract).

    Google Scholar 

  • Ma, C. M., Zhu, C., Zheng, Z. G., Yin, Q., and Zhao, Z. P., 2008. Climate changes in East China since the late-glacial inferred from high-resolution mountain peat humification records. Science in China Series D -Earth Science, 38 (9): 1078–1091.

    Google Scholar 

  • Marini, J. C., Chauvel, C., and Maury, R. C., 2005. Hf isotope compositions of northern Luzon arc lavas suggest involvement of pelagic sediments in their source. Contributions to Mineralogy & Petrology, 149: 216–232, DOI: https://doi.org/10.1007/s00410-004-0645-4.

    Article  Google Scholar 

  • McLennan, S. M., 1989. Rare earth elements in sedimentary rocks: Influence of provenance and sedimentary processes. Reviews in Mineralogy and Geochemistry, 21: 169–200.

    Google Scholar 

  • Meng, X. W., Xia, P., Zhang, J., and Wang, X. Q., 2011. Evolution of the East Asian monsoon and its response to uplift of the Tibetan Plateau since 1.8 Ma recorded by major elements in sediments of the South China Sea. Chinese Science Bulletin, 56 (34): 547–551.

    Article  Google Scholar 

  • Milliman, J. D., and Meade, R. H., 1983. World-wide delivery of river sediment to the oceans. The Journal of Geology, 91: 1–21.

    Article  Google Scholar 

  • Reimer, P. J., Bard, E., Bayliss, A., Beck, J. W., Blackwell, P. G., Ramsey, C. B., Brown, D. M., Buck, C. E., Edwards, R. L., Friedrich, M., Grootes, P. M., Guilderson, T. P., Haflidason, H., Hadjas, I., Hatte, C., Heaton, T. J., Hogg, A. G., Hughen, K. A., Kaiser, K. F., Kromer, B., Manning, S. W., Reimer, R. W., Richards, D. A., Scott, E. M., Southon, J. R., Turney, C. S. M., and Plicht, J. V. D., 2013. Selection and treatment of data for radiocarbon calibration: An update to the international calibration (IntCal) criteria. Radiocarbon, 55: 23.

    Article  Google Scholar 

  • Sanyal, P., and Sinha, R., 2010. Evolution of the Indian summer monsoon: Synthesis of continental records. Geological Society London Special Publications, 342 (1): 153–183.

    Article  Google Scholar 

  • Sheng, M., Wang, X. S., Zhang, S. Q., Chu, G. Q., Su, Y. L., and Yang, Z. Y., 2017. A 20,000-year high-resolution pollen record from Huguangyan Maar Lake in tropical-subtropical South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 472: 83–92.

    Article  Google Scholar 

  • Shi, Y. F., and Kong, Z. C., 1992. The Climates and Environments of Holocene Megathermal in China. China Ocean Press, Beijing, 1–8.

    Google Scholar 

  • Steinke, S., Hanebuth, T. J. J., Vogt, C., and Stattegger, K., 2008. Sea level induced variations in clay mineral composition in the southwestern South China Sea over the past 17,000 yr. Marine Geology, 250: 199–210.

    Article  Google Scholar 

  • Stuiver, M., Reimer, P. J., and Reimer, R. W., 2016. CALIB 7.1 [WWW program] at. http://calib.org (accessed 2016-8-10).

  • Tjallingii, R., Stattegger, K., Wetzel, A., and Phung, V. P., 2010. Infilling and flooding of the Mekong River incised-valley system during deglacial sea-level rise. Quaternary Science Reviews, 29: 1432–1444.

    Article  Google Scholar 

  • Vital, H., Stattegger, K., and Garbe-Schonberg, C. D., 1999. Composition and trace-element geochemistry of detrital clay and heavy-mineral suites of the lowermost Amazon River: A provenance study. Journal of Sedimentary Research, 69: 563–575.

    Article  Google Scholar 

  • Wan, S. M., Clift, P. D., Zhao, D. B., Hovius, N., Munhoven, G., France-Lanord, C., Wang, Y. X., Xiong, Z. J., Huang, J., Yu, Z. J., Zhang, J., Ma, W. T., Zhang, G. L., Li, A. C., and Li, T. G., 2017. Enhanced silicate weathering of tropical shelf sediments exposed during glacial lowstands: A sink for atmospheric CO2. Geochimica et Cosmochimica Acta, 200: 123–144.

    Article  Google Scholar 

  • Wan, S. M., Li, A. C., Clift, P. D., and Stuut, J. B. W., 2007a. Development of the East Asian monsoon: Mineralogical and sedimentologic records in the northern South China Sea since 20 Ma. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 561–582.

    Article  Google Scholar 

  • Wan, S. M., Li, A. C., Clift, P. D., Wu, S. G., Xu, K. H., and Li, T. G., 2010. Increased contribution of terrigenous supply from Taiwan to the northern South China Sea since 3 Ma. Marine Geology, 278: 115–121.

    Article  Google Scholar 

  • Wan, S. M., Li, A. C., Stuut, J. B. W., and Xu, F. J., 2007b. East Asian monsoon evolution revealed by the granularity of station ODP1146 in the northern South China Sea in the past 20 Ma. Science China-Earth Sciences, 37 (6): 761–770.

    Google Scholar 

  • Wang, X. S., Chu, G. Q., Sheng, M., Zhang, S. Q., Li, J. H., Chen, Y., Tang, L., Su, Y. L., Pei, J. L., and Yang, Z. Y., 2016. Millennial-scale Asian summer monsoon variations in South China since the last deglaciation. Earth and Planetary Science Letters, 451: 22–30, DOI: https://doi.org/10.1016/j.epsl.2016.07.006.

    Article  Google Scholar 

  • Wehausen, R., and Brumsack, H. J., 2002. Astronomical forcing of the East Asian monsoon mirrored by the composition of Pliocene South China Sea sediments. Earth and Planetary Science Letters, 201 (3–4): 621–636.

    Article  Google Scholar 

  • Xie, X., Zheng, H. B., and Qiao, P. J., 2014. Millennial climate changes since MIS 3 revealed by element records in deep-sea sediments from northern South China Sea. Chinese Science Bulletin, 59: 776–784.

    Article  Google Scholar 

  • Yang, S. Y., Jung, H, S., Lim, D. I., and Li, C. X., 2003. A review on the provenance discrimination of the Yellow Sea sediments. Earth Science Reviews, 63 (1): 93–120.

    Article  Google Scholar 

  • Yang, W. G., Zheng, H. B., Wang, K., Xie, X., Chen, G. C., and Mei, X., 2007. Sedimentary characteristic of terrigenous clast of site MD05-2905 in the northeastern part of South China Sea after 36 ka and evolution of East Asian monsoon. Advances in Earth Science, 22 (10): 1012–1018 (in Chinese with English abstract).

    Google Scholar 

  • Yang, W. G., Zheng, H. B., Xie, X., Zhou, B. C., and Cheng, X. R., 2008. East Asian summer monsoon maximum records in northern South China Sea during the early Holocene. Quaternary Sciences, 28: 425–430 (in Chinese with English abstract).

    Google Scholar 

  • Yoneda, M., Uno, H., Shibata, Y., Suzuki, R., Kumamoto, Y., Yoshida, K., Sasaki, T., Suzuki, A., and Kawahata, H., 2007. Radiocarbon marine reservoir ages in the western Pacific estimated by pre-bomb molluscan shells. Nuclear Instruments and Methods in Physics Research, 259: 432–437.

    Article  Google Scholar 

  • Yuan, D., 2004. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 304 (5670): 575–578.

    Article  Google Scholar 

  • Zhang, J. W., Chen, F. H., Holmes, J. A., Li, H., Guo, X. Y., Wang, J. L., Li, S., Lü, Y. B., Zhao, Y., and Qiang, M. R., 2011. Holocene monsoon climate documented by oxygen and carbon isotopes from lake sediments and peat bogs in China: A review and synthesis. Quaternary Science Reviews, 30: 1973–1987.

    Article  Google Scholar 

  • Zhao, H. Q., and Wang, P. X., 1999. Progress in Quaternary paleoceanography of the South China Sea: A review. Quaternary Science, 6: 481–501 (in Chinese with English abstract).

    Google Scholar 

  • Zhao, L., Ma, C. M., Leipe, C., Long, T. W., Liu, K. B., Lu, H. Y., Tang, L. Y., Zhang, Y., Wagner, M., and Tarasov, P. E., 2017a. Holocene vegetation dynamics in response to climate change and human activitiesderived from pollen and charcoal records from southeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology, 485: 644V660.

    Article  Google Scholar 

  • Zhao, Y., Yang, S., Liu, J., Fan, D., Yang, R., Bi, L., and Chang, Y. P., 2017b. Reconstruction of silicate weathering intensity and paleoenvironmental change during the late Quaternary in the Zhuoshui River catchment in Taiwan. Quaternary International, 452: 43–53.

    Article  Google Scholar 

  • Zheng, H. B., Chen, G. C., Xie, X., Mei, X., Li, J. R., Ge, H. M., and Huang, E. Q., 2008. Grain size distribution and dynamic control of late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution. Quaternary Sciences, 3: 414–424 (in Chinese with English abstract).

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program (No. 2017YFC 0306703), and the National Natural Science Foundation of China (No. 41706065).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuli Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, L., Feng, X., Tang, R. et al. Response of Terrigenous Sediment Input to Sea Level Change and East Asian Monsoon Evolution Since 30kyr in the Southwestern Taiwan Basin. J. Ocean Univ. China 20, 539–552 (2021). https://doi.org/10.1007/s11802-021-4647-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4647-x

Key words

Navigation