Skip to main content
Log in

In vitro Antioxidant Effects of Porphyra haitanensis Peptides on H2O2-Induced Damage in HepG2 Cells

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

In this study, protein from Porphyra haitanensis was used as raw material to prepare an antioxidant peptide, and its antioxidant activity was evaluated in vitro. A model of H2O2-induced oxidative damage in HepG2 cells was established, and the effects of Porphyra haitanensis hydrolysates (PHHs) on superoxide dismutase (SOD) activity and malondialdehyde (MDA) content were detected. Finally, the structure of PHHs was identified by ESI-MS/MS. The results showed that the 1,1-diphenyl-2-pyridylhydrazine (DPPH)-free radical-scavenging ability of PHHs was the strongest (59.28% at 1.0 mg mL−1) when hydrolyzed with an acidic protease for 4 h. PHHs with different concentrations had protective effects on H2O2-induced damage to HepG2 cells, and the protective effect was enhanced with increasing concentrations. When the level was 400 µg mL−1, the cell survival rate was as high as 88.62%. Moreover, PHHs can significantly reduce oxidative damage to HepG2 cells by H2O2, improve SOD activity, and reduce MDA content. The tetrapeptide Asp-Lys-Ser-Thr, with a molecular weight of 448 Da, was identified as an important fraction of PHHs by high-resolution mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bedoya-Ramírez, D., Cilla, A., Contreras-Calderón, J., and Alegría-Torán, A., 2017. Evaluation of the antioxidant capacity, furan compounds and cytoprotective/cytotoxic effects upon Caco-2 cells of commercial Colombian coffee. Food Chemistry, 219: 364–372.

    Article  Google Scholar 

  • Biemann, K., 1992. Mass spectrometry of peptides and proteins. Annual Review of Biochemistry, 61(1): 977–1010.

    Article  Google Scholar 

  • Borawska, J., Darewicz, M., Vegarud, G. E., and Minkiewicz, P., 2016. Antioxidant properties of carp (Cyprinus carpio L.) protein ex vivo and in vitro hydrolysates. Food Chemistry, 194: 770–779.

    Article  Google Scholar 

  • Carlos, M. G. A., Walter, M., and Jonh, J. M. A., 2017. Antioxidant potential use of bioactive peptides derived from mung bean hydrolysates (Vigna radiata). African Journal of Food Science, 11(3): 67–73.

    Article  Google Scholar 

  • Chaaban, H., Ioannou, I., Chebil, L., Slimane, M., Gérardin, C., Paris, C., Charbonnel, C., Chekir, L., and Ghoul, M., 2017. Effect of heat processing on thermal stability and antioxidant activity of six flavonoids. Journal of Food Processing and Preservation, 41(5): 1–12.

    Article  Google Scholar 

  • Chi, C. F., Hu, F. Y., Wang, B., Li, T., and Ding, G. F., 2015. Antioxidant and anticancer peptides from the protein hydrolysate of blood clam (Tegillarca Granosa) muscle. Journal of Functional Foods, 15: 301–313.

    Article  Google Scholar 

  • Department of Fishery and Fishery Administration, Ministry of Agriculture and Rural Areas, 2019. China Fishery Statistical Yearbook, 23.

  • Dulf, F. V., Vodnar, D. C., and Socaciu, C., 2016. Effects of solid-state fermentation with two filamentous fungi on the total phenolic contents, flavonoids, antioxidant activities and lipid fractions of plum fruit (Prunus domestica L.) by-products. Food Chemistry, 209: 27–36.

    Article  Google Scholar 

  • Hu, N., Tu, X. R., Li, K. T., Liu, Y. K., Guo, A. M., Tu, G. Q., and Huang, L., 2017. Changes in antioxidant enzyme activities and malondialdehyde (MDA) content of rice with blast resistance induced by ag-antibiotic 702. Plant Diseases and Pests, 8(2): 36–40.

    Google Scholar 

  • Jang, A., Jo, C., Kang, K. S., and Lee, M., 2008. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry, 107(1): 327–336.

    Article  Google Scholar 

  • Jang, H. L., Liceaga, A. M., and Yoon, K. Y., 2016. Purification, characterization and stability of an antioxidant peptide derived from sandfish (Arctoscopus japonicus) protein hydrolysates. Journal of Functional Foods, 20: 433–442.

    Article  Google Scholar 

  • Jin, D., Liu, X., Zheng, X., Wang, X., and He, J., 2016. Preparation of antioxidative corn protein hydrolysates, purification and evaluation of three novel corn antioxidant peptides. Food Chemistry, 204: 427–436.

    Article  Google Scholar 

  • Jin, J. E., Ahn, C. B., and Je, J. Y., 2018. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed ark shell (Scapharca subcrenata). Process Biochemistry, 72: 170–176.

    Article  Google Scholar 

  • Kleekayai, T., Harnedy, P. A., O’Keeffe, M. B., Poyarkov, A. A., Cunhaneves, A., Suntornsuk, W., and FitzGerald, R. J., 2015. Extraction of antioxidant and ace inhibitory peptides from thai traditional fermented shrimp pastes. Food Chemistry, 176: 441–447.

    Article  Google Scholar 

  • Knuckles, B. E., Fremery, D. D., and Kohler, G. O., 1982. Gel filtration chromatography of protein extracts from lucerne (Alfalfa). Journal of the Science of Food and Agriculture, 33(2): 128–132.

    Article  Google Scholar 

  • Ko, J., Lee, J., Samarakoon, K., Kim, J., and Jeon, Y., 2013. Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthys olivaceus) using digestive proteases. Food and Chemical Toxicology, 52: 113–120.

    Article  Google Scholar 

  • Lee, M. S., Kim, J. I., Utsuki, T., Park, N. G., and Kim, H. R., 2012. Cytoprotective effects of phlorofucofuroeckol A isolated from Ecklonia stolonifera against tacrine-treated HepG2 cells. Fitoterapia, 83(6): 1060–1067.

    Article  Google Scholar 

  • Li, B., Chen, F., Wang, X., Ji, B. P., and Wu, Y. N., 2007. Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 102: 1135–1143.

    Article  Google Scholar 

  • Li, X. H., Chen, Z. J., Liu, Y. L., Yu, J., Wang, F. X., and Wang, J. H., 2013. Molecular weight and antioxidant activity of enzymatic hydrolysates of silver carp. Food Science, 34(17): 28–32.

    Google Scholar 

  • Lin, L., Zhu, Q., and Zhao, M., 2019. Preparation of antioxidant peptide from Moringa oleifera seeds and its protective effects on oxidatively damaged erythrocytes. Food Science, 40(7): 40–46.

    Google Scholar 

  • Liu, Q. M., Xu, S. S., Li, L., Pan, T. M., Shi, C. L., Liu, H., Cao, M. J., Su, W. J., and Liu, Q. M., 2017. In vitro and in vivo immunomodulatory activity of sulfated polysaccharide from Porphyra haitanensis. Carbohydrate Polymers, 165: 189–196.

    Article  Google Scholar 

  • Ma, Z., Zhang, W., Yu, G., He, H., and Zhang, Y., 2012. The primary structure identification of a corn peptide facilitating alcohol metabolism by HPLC-MS/MS. Peptides, 37(1): 138–143.

    Article  Google Scholar 

  • Marcela, G. M., Eva, R. G., del Carmen, R. R. M., and Rosalva, M. E., 2016. Evaluation of the antioxidant and antiproliferative effects of three peptide fractions of germinated soybeans on breast and cervical cancer cell lines. Plant Foods for Human Nutrition, 71(4): 368–374.

    Article  Google Scholar 

  • Mei, W., Dai, J., and Gu, W., 1998. Assay on the molecular weight distribution of oligo peptide in corn protein hydrolysate with gel filtration chromatography. Food and Fermentation Industries, 24(5): 25–27.

    Google Scholar 

  • Miller, A. F., 2004. Superoxide dismutases: Active sites that save, but a protein that kills. Current Opinion in Chemical Biology, 8(2): 162–168.

    Article  Google Scholar 

  • Plaza, M., Batista, A. G., Cazarin, C. B. B., Sandahl, M., Turner, C., Östman, E., and Júniorb, M. R., 2016. Characterization of antioxidant polyphenols from Myrciaria jaboticaba peel and their effects on glucose metabolism and antioxidant status: A pilot clinical study. Food Chemistry, 211: 185–197.

    Article  Google Scholar 

  • Qiu, X., Chen, S., and Dong, S., 2014. Effects of silver carp antioxidant peptide on the lipid oxidation of sierra fish fillets (Scomberomorus niphonius) during frozen storage. Journal of Food Biochemistry, 38(2): 167–174.

    Article  Google Scholar 

  • Sahari, M. A., Moghimi, H. R., Hadian, Z., Barzegar, M., and Mohammadi, A., 2017. Physicochemical properties and antioxidant activity of α-tocopherol loaded nanoliposome’s containing DHA and EPA. Food Chemistry, 215: 157–164.

    Article  Google Scholar 

  • Saiga, A., Tanabe, S., and Nishimura, T., 2003. Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural & Food Chemistry, 51(12): 3661–3667.

    Article  Google Scholar 

  • Sallam, S., Dolog, I., Paik, B. A., Jia, X., Kiick, K. L., and Wesdemiotis, C., 2018. Sequence and conformational analysis of peptide-polymer bioconjugates by multidimensional mass spectrometry. Biomacromolecules, 19(5): 1498–1507.

    Article  Google Scholar 

  • Sheih, I. C., Wu, T. K., and Fang, T. J., 2009. Antioxidant properties of a new antioxidative peptide from algae protein waste hydrolysate in different oxidation systems. Bioresource Technology, 100(13): 3419–3425.

    Article  Google Scholar 

  • Shen, Y., Zhang, H., Cheng, L., Wang, L., Qian, H., and Qi, X., 2015. In vitro and in vivo antioxidant activity of polyphenols extracted from black highland barley. Food Chemistry, 194: 1003–1012.

    Article  Google Scholar 

  • Skalicky, J., Muzakova, V., Kandar, R., Meloun, M., Rousar, T., and Palicka, V., 2008. Evaluation of oxidative stress and inflammation in obese adults with metabolic syndrome. Clinical Chemistry and Laboratory Medicine, 46(4): 499–505.

    Article  Google Scholar 

  • Sun, S. W., Yu, C. G., Qiao, Y. T., Lin, Y., Dong, G. J., Liu, C. N., Zhang, L. F., Zhang, Z., Cai, J. J., and Zhang, H., 2008. Deriving the probabilities of water loss and ammonia loss for amino acids from tandem mass spectra. Journal of Proteome Research, 7(1): 202–208.

    Article  Google Scholar 

  • Tang, W., Lin, L., Xie, J., Wang, Z., Wang, H., and Dong, Y., 2016. Effect of ultrasonic treatment on the physicochemical properties and antioxidant activities of polysaccharide from Cyclocarya paliurus. Carbohydrate Polymers, 151: 305–312.

    Article  Google Scholar 

  • Wang, B., Li, L., Chi, C., Ma, J., Luo, H., and Xu, Y., 2013. Purification and characterisation of a novel antioxidant peptide derived from blue mussel (Mytilus edulis) protein hydrolysate. Food Chemistry, 138(2–3): 1713–1719.

    Article  Google Scholar 

  • Wang, L., Ding, L., Yu, Z., Zhang, T., Ma, S., and Liu, J., 2016. Intracellular ROS scavenging and antioxidant enzyme regulating capacities of corn gluten meal-derived antioxidant peptides in HepG2 cells. Food Research International, 90: 33–41.

    Article  Google Scholar 

  • Wu, H., Jin, W., Sun, S., Li, X., and Zhu, B., 2015. Identification of antioxidant peptides from protein hydrolysates of scallop (Patinopecten Yessoensis) female gonads. European Food Research and Technology, 242: 713–722.

    Article  Google Scholar 

  • Wu, M., Tong, C., Wu, Y., Liu, S., and Li, W., 2016. A novel thyroglobulin-binding lectin from the brown alga Hizikia fusiformis and its antioxidant activities. Food Chemistry, 201: 7–13.

    Article  Google Scholar 

  • Xu, Y., Cai, F., Yu, Z., Zhang, L., Li, X., Yang, Y., and Liu, G., 2016. Optimisation of pressurised water extraction of polysaccharides from blackcurrant and its antioxidant activity. Food Chemistry, 194: 650–658.

    Article  Google Scholar 

  • Yang, S., Tang, Z., Tang, S., Zhang, T., Tang, F., Wu, Y., Wang, Y., Wang, L., and Liu, G., 2016. Purification and characterization of an antioxidant protein from fertilized eggs. Korean Journal for Food Science of Animal Resources, 36: 791–798.

    Article  Google Scholar 

  • Yu, J., Hu, Y., Xue, M., Dun, Y., and Zhao, S., 2016. Purification and identification of antioxidant peptides from enzymatic hydrolysate of spirulina platensis. Journal of Microbiology and Biotechnology, 26(7): 1216–1223.

    Article  Google Scholar 

  • Zhou, A., Feng, Z., Feng, Y., Liu, X., Xin, L., and Chen, Y., 2014. Research of antioxidant peptides produced from the waste of white shrimp (Penaeus Vannamei). Journal of Chinese Institute of Food Science and Technology, 14: 85–91.

    Google Scholar 

  • Zhuang, Y., Sun, L. P., Zhao, X., Hou, H., and Li, B., 2010. Investigation of gelatin polypeptides of jellyfish (Rhopilema esculentum) for their antioxidant activity in vitro. Food Technology and Biotechnology, 48(2): 222–228.

    Google Scholar 

  • Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J., 2000. Reactive oxygen species (ROS)-induced ROS release: A new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. Journal of Experimental Medicine, 192(7): 1001–1014.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2018YFD0901102), the Guangdong Provincial Special Fund for Modern Agriculture Industry Technology Innovation Teams (No. 2020KJ151), the Special Scientific Research Funds for Central Non-profit Institutes, Chinese Academy of Fishery Sciences (No. 2020 TD69), and the China Agriculture Research System (No. CARS-50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengjun Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Yu, J., Hu, X. et al. In vitro Antioxidant Effects of Porphyra haitanensis Peptides on H2O2-Induced Damage in HepG2 Cells. J. Ocean Univ. China 20, 421–428 (2021). https://doi.org/10.1007/s11802-021-4551-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-021-4551-4

Key words

Navigation