Skip to main content
Log in

The Performance of Dual-Frequency Polarimetric Scatterometer in Sea Surface Wind Retrieval

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

The wind retrieval performance of HY-2A scanning scatterometer operating at Ku-band in HH and VV polarizations has been well evaluated in the wind speed range of 0–25 ms−1. In order to obtain more accurate ocean wind field, a potential extension of dual-frequency (C-band and Ku-band) polarimetric measurements is investigated for both low and very high wind speeds, from 5 to 45ms−1. Based on the geophysical model functions of C-band and Ku-band, the simulation results show that the polarimetric measurements of Ku-band can improve the wind vector retrieval over the entire scatterometer swath, especially in nadir area, with the wind direction root-mean-square error (RMSE) less than 12° in the wind speed range of 5–25 m s−1. Furthermore, the results also show that C-band cross-polarization plays a very important role in improving the wind speed retrieval, with the wind speed retrieval accuracy better than 2 ms−1 for all wind conditions (0–45 ms−1). For extreme winds, the C-band HH backscatter coefficients modeled by CMOD5.N(H) and the ocean co-polarization ratio model at large incidence are used to retrieve sea surface wind vector. This result reveals that there is a big decrease of wind direction retrieval RMSE for extreme wind fields, and the retrieved result of C-band HH polarization is nearly the same as that of C-band VV polarization for low-to-high wind speed (5–25 ms−1). Thus, to improve the wind retrieval for all wind conditions, the dual-frequency polarimetric scatterometer with C-band and Ku-band horizontal polarization in inner beam, and C-band horizontal and Ku-band vertical polarization in outer beam, can be used to measure ocean winds. This study will contribute to the wind retrieval with merged satellites data and the future spaceborne scatterometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Carswell J. R., Carson S. C., McIntosh R. E., Li F. K., Neumann G., McLaughlin D. G., Wilkerson J. C., Black P. G., and Nghiem S. V., 1994. Airborne scatterometers: Investigating ocean backscatter under low- and high-wind conditions. Proceeding of the IEEE, 82 (12): 1835–1860.

    Article  Google Scholar 

  • Chelton D. B., and Xie S. P., 2010. Coupled ocean-atmosphere interaction at oceanic mesoscales. Oceanography, 23 (4): 52–69.

    Article  Google Scholar 

  • Chiara G. D., 2017. Improving the assimilation of scatterometer wind observations in global NWP. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, PP (99): 1–9.

    Google Scholar 

  • Durden S. L., and Perkovic-Martin D., 2017. The RapidScat Ocean winds scatterometer: A radar system engineering perspective. IEEE Geoscience and Remote Sensing Magazine, 5 (3): 36–43.

    Article  Google Scholar 

  • Fernandez D. E., Carswell J. R., Frasier S., Chang P. S., Black P. G., and Marks F. D., 2006. Dual-polarized C- and Ku-band ocean backscatter response to hurricane-force winds. Journal of Geophysical Research, 111: C08013.

    Article  Google Scholar 

  • Figa-Saldana J., Wilson J. J. W., Attema E., Gelsthorpe R., Drinkwater M. R., and Stoffenlen A., 2002. The Advanced Scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers. Canadian Journal of Remote Sensing, 28 (3): 404–412.

    Article  Google Scholar 

  • Freilich M. H., and Dunbar R. S., 1999. The accuracy of the NSCAT-1 vector winds: Comparisons with national data buoy center buoys. Journal of Physical Research, 104 (C5): 11231–11246.

    Article  Google Scholar 

  • Freilich M. H., and Wentz F., 1997. Finalizing the NSCAT-1 model and progress towards NSCAT-2. Proceeding of NASA Scatterometer Science Symposium. Hawaii, 146–148.

    Google Scholar 

  • Freilich M. H., Long D. G., and Spencer M. W., 1994. SeaWinds: A scanning scatterometer for ADEOS-II-science overview. Proceedings of the 1994 International Geoscience and Remote Sensing Symposium on Surface and Atmospheric Remote Sensing: Technologies, Data Analysis and Interpretation, 2: 960–963.

    Google Scholar 

  • Gaston R., and Rodriguez E., 2008. Quikscat follow-on concept study report. Technical Report. Jet Propulsion Laboratory. Pasadena, California, 08-18.

    Google Scholar 

  • Graf J. E., Naderi F., and Tsai W. Y., 1995. Overview of NASA scatterometers projects. Proceedings of the 1995 International Geoscience and Remote Sensing Symposium on Quantitative Remote Sensing for Science and Applications, 2: 1564–1566.

    Article  Google Scholar 

  • Hersbach H., 2008. CMOD5.n: A C-band geophysical model function for equivalent neutral wind. ECMWF Technical Memorandum, No.554, 22pp.

  • Hwang P. A., Zhang B., Toporkov J. V., and Perroe W., 2010. Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval. Journal of Geophysical Research, 115 (C8): C08019–12.

    Article  Google Scholar 

  • Jayaram C., Bhaskar U., Swain D., and Bansal S., 2017. Oceansat-2 Scatterometer (OSCAT) wind fields over the global oceans. Proceedings of the National Academy of Science, India Section A: Physical Sciences, 87 (4): 797–806.

    Article  Google Scholar 

  • Kasaka, Y., 2014. Increasing wind sinks heat. Nature Climate Change, 4: 172–173.

    Article  Google Scholar 

  • Lin M. S., and Zou J. H., 2013. HY-2A microwave scatterometer wind retrieval algorithm. Engineering Sciences, 15 (7): 70–76.

    Google Scholar 

  • Lin W. M., Portabella M., Stoffelen A., and Verhoef A., 2017. Toward an improved wind inversion algorithm for RapidScat. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (5): 2156–2164.

    Article  Google Scholar 

  • Linwood-Jones W., Schroeder L. C., Bracalente E. M., Boggs E. M., Brown R. A., Dome G. J., Pierson W. J., and Wentz F. J., 1982. The Seasat-A satellite scatterometer: The geophysical evaluation remote sensed winds over the ocean. Journal of Geophysical Research, 87: 3297–3317.

    Article  Google Scholar 

  • Martin S., 2014. An Introduction to Ocean Remote Sensing. Cambridge University Press, Cambridge, 476pp.

    Google Scholar 

  • Moore R. K., and Fung A. K., 1997. Radar determination of winds at sea. Proceeding of the IEEE, 67 (11): 1504–1521.

    Article  Google Scholar 

  • Nghiem S. V., Li F. K., and Neumann, G., 1996. Ku-band ocean backscatter functions for surface wind retrieval. Proceeding of the 1996 International Geoscience and Remote Sensing Symposium on Remote Sensing for a Sustainable Future, 3: 1469–1471.

    Google Scholar 

  • Nghiem S. V., Li. F. K., Lou S. H., Neumann. G., McIntosh R. E., Carson S. C., Carswell J., Walsh E., Donelan M. A., and Drennan W., 1995. Observations of ocean radar backscatter at Ku and C bands in the presence of large waves during the surface wave dynamics experiment. IEEE Transaction on Geoscience and Remote Sensing, 33(3): 708–721.

    Article  Google Scholar 

  • Rivas M. B., Stoffelen A., and Zadelhoff G. J., 2012. Polarization options for the EPS-SG scatterometer. NWP/SAF Associate Scientist Mission Report. NWPSAF-KN-VS-009.

    Google Scholar 

  • Rivas M. B., Stoffelen A., and Zadelhoff G. J., 2014. The benefit of HH and VH polarizations in retrieving extreme wind speeds for an ASCAT-Type scatterometer. IEEE Transaction on Geoscience and Remote Sensing, 52 (7): 4273–4280.

    Article  Google Scholar 

  • Rodriguez E., Gaston R. W., Durden S. L., Stiles B., Spencer M., Veilleus L., Hughes R., Fernadez D. E., Chan S., Veleva S., Dunbar R. S., 2009. A scatterometer for XOVWM, the extended ocean vector winds mission. IEEE National Radar Conference. Pasadena, California, 1–4.

    Google Scholar 

  • Schultz H., 1990. A circular median filter approach for resolving directional ambiguities in wind fields retrieved from spaceborne scatterometer data. Journal of Geophysical Research, 95 (4): 5291–5303.

    Article  Google Scholar 

  • Soisuvarn S., Jelenak Z., Chang P. S., Alsweiss S. O., and Zhu Q., 2013. CMOD5.H-A high wind geophysical model function for C-band vertical polarized satellite scatterometer measurements. IEEE Transaction on Geoscience and Remote Sensing, 51 (6): 3744–3760.

    Article  Google Scholar 

  • Soisuvarn S., Jelenak Z., Chang P. S., Zhu Q., and Sindic-Rancic G., 2008. Validation of NOAA’s near real-time ASCAT ocean vector winds. IEEE International Geoscience and Remote Sensing Symposium. Boston, Massachusetts, I118–I121.

    Google Scholar 

  • Spencer M. W., Wu C., and Long D. G., 1997. Tradeoffs in the design of a spaceborne scanning pencil beam scatterometer: Application to Sea-Winds. IEEE Transaction on Geoscience and Remote Sensing, 35 (1): 115–126.

    Article  Google Scholar 

  • Stoffelen A., Aaboe S., Calvet, J.-C., Cotton J., Chiara G. D., Saldana J. F., Mouche A. A., Portabella M., Scipal K., and Wolfgang W., 2017. Scientific developments and the EPS-SG scatterometer. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10 (5): 2086–2097.

    Article  Google Scholar 

  • Stoffelen A., and Portabella M., 2006. On Bayesian scatterometer wind inversion. IEEE Transaction on Geoscience and Remote Sensing, 44 (6): 1523–1533.

    Article  Google Scholar 

  • Tsai W. Y., Nghiem S. V., Huddleston J. N., Spencer M. W., Stiles B. W., and West R. D., 2000. Polarimetric scatterometer: A promising technique for improving ocean surface wind measurements from space. IEEE Transaction on Geoscience and Remote Sensing, 38 (4): 1903–1921.

    Article  Google Scholar 

  • Vachon P. W., and Wolfe J., 2011. C-band cross-polarization wind speed retrieval. IEEE Geoscience and Remote Sensing Letters, 8 (3): 456–459.

    Article  Google Scholar 

  • Verspeek J., Stoffelen A., Portabella M., Bonekam H., Anderson C., and Figa-Saldana J., 2010. Validation and calibration of ASCAT using CMOD5.n. IEEE Transaction on Geoscience and Remote Sensing, 48 (1): 386–395.

    Article  Google Scholar 

  • Wentz F. J., and Ricciardulli L., 2011. Comment on ‘Global trends in wind speed and wave height’. Science, 334 (5058): 905.

    Article  Google Scholar 

  • Wentz F. J., and Smith D. K., 1999. A model function for the ocean normalized cross section at 14 GHz derived from NSCAT observation. Journal of Geophysical Research, 104 (C5): 11499–11507.

    Article  Google Scholar 

  • Wentz F. J., Freilich M. H., and Smith D. K., 1998. NSCAT-2 geophysical model function. Proceeding of AGU Fall Meeting on Ocean Science. San Diego, California, OS72G-01: 1–10.

    Google Scholar 

  • Yueh S. H., 1997. Modeling of wind direction signals in polarimetric sea surface brightness temperatures. IEEE Transaction on Geoscience and remote sensing, 35 (6): 1400–1418.

    Article  Google Scholar 

  • Yueh S. H., Kwok R., and Nghiem S. V., 1994. Polarimetric scattering and emission properties of targets with reflections symmetry. Radio Science, 29 (6): 1409–1420.

    Article  Google Scholar 

  • Yueh S. H., Stiles B. W., Tsai W. Y., Hu H., and Liu W. T., 2001. Quikscat geophysical model function for tropical cyclones and application to hurricane floyd. IEEE Transaction on Geoscience and Remote Sensing, 3 9(12): 2601–2612.

    Article  Google Scholar 

  • Yueh S. H., Wilson W. J., and Dinardo S., 2002. Polarimetric radar remote sensing of ocean surface wind. IEEE Transaction on Geoscience and Remote Sensing, 40 (4): 793–800.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the National Key R&D Program of China (No. 2016YFC1401006), the National Natural Science Foundation of China (Nos. 51279186, 51479183 and 41676169), the National Program on Key Basic Research Project (No. 2011CB013704), the 111 Project (No. B14028), and the Marine and Fishery Information Center Project of Jiangsu Province (No. SJC2014 110338).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubo Liu or Enbo Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Wei, E., Jin, X. et al. The Performance of Dual-Frequency Polarimetric Scatterometer in Sea Surface Wind Retrieval. J. Ocean Univ. China 18, 1051–1060 (2019). https://doi.org/10.1007/s11802-019-4018-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-4018-z

Key words

Navigation