Skip to main content
Log in

Estimation of Oceanic Heat Flux Under Sea Ice in the Arctic Ocean

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Oceanic heat flux (Fw) is the vertical heat flux that is transmitted to the base of sea ice. It is the main source of sea ice bottom melting. The residual method was adopted to study oceanic heat flux under sea ice. The data acquired by 28 ice mass balance buoys (IMBs) deployed over the period of 2004 to 2013 in the Arctic Ocean were used. Fw values presented striking seasonal and spatial variations. The average summer Fw values for the Canada Basin, Transpolar Drift, and Multiyear Ice area were 16.8, 7.7, and 5.9 Wm−2, respectively. The mean summer Fw for the whole Arctic was 10.1 Wm−2, which was equivalent to a bottom melt of 0.4m. Fw showed an autumn peak in November in the presence of the near-surface temperature maximum (NSTM). The average Fw for October to December was 3.7Wm−2. And the average Fw for January to March was 1.0Wm−2, which was approximately one third of the average Fw in the presence of NSTM. The summer Fw was almost wholly attributed to the incident solar radiation that enters the upper ocean through leads and the open water. Fw calculated through the residual method using IMB data was compared with that calculated through the parameterization method using Autonomous Ocean Flux Buoy data. The results revealed that the Fw provided by the two methods were consistent when the sea ice concentration exceeded 70% and mixing layer temperature departure from freezing point was less than 0.15℃. Otherwise, the Fw yielded by the residual method was approximately one third smaller than that provided by the parameterization method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cavalieri, D. J., and Parkinson, C. L., 2012. Arctic sea ice variability and trends, 1979–2010. The Cryosphere, 6, 881–889, DOI: 10.5194/tc-6-881.2012.

    Article  Google Scholar 

  • Comiso, J. C., 2012. Large decadal decline of the Arctic multi-year ice cover. Journal of Climate, 25 (4): 1176–1193.

    Article  Google Scholar 

  • Jackson, J., Carmack, E., McLaughlin, F., Allen, S. E., and Ingram, R., 2010. Identification, characterization, and change of the near-surface temperature maximum in the Canada Basin, 1993–2008. Journal of Geophysical Research: Oceans, 115: C05021, DOI:10.1029/2009JC005265.

    Google Scholar 

  • Jackson, J. M., Williams, W. J., and Carmack, E. C., 2012. Winter sea-ice melt in the Canada Basin, Arctic Ocean. Geophysical Research Letters, 39 (3): L03603.

    Google Scholar 

  • Jakobsson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H. W., and Johnson, P., 2008. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35: L07602, DOI: 10.1029/2008GL033520.

    Article  Google Scholar 

  • Kistler, R., Kalnay, E., Collins, W., Saha, S., White, G., Woollen, J., Chelliah, M., Ebisuzaki, W., Kanamitsu, M., Kousky, V., Dool, H., Jenne, R., and Fiorino, M., 2001. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82 (2): 247–268.

    Article  Google Scholar 

  • Krishfield, R. A., and Perovich, D. K., 2005. Spatial and temporal variability of oceanic heat flux to the Arctic ice pack. Journal of Geophysical Research: Oceans, 110 C7): C07021.

    Article  Google Scholar 

  • Kwok, R., and Rothrock, D. A., 2009. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophysical Research Letters, 36 (15): L15501.

    Article  Google Scholar 

  • Kwok, R., and Untersteiner, N., 2011. The thinning of Arctic sea ice. Physics Today, 64, 36–41.

    Article  Google Scholar 

  • Laxon, S. W., Giles, K. A., Ridout, A. L., Wingham, D. J., Wil-latt, R., Cullen, R., Kwok, R., Schweiger, A., Zhang, J., Hass, C., Hendricks, S., Krishfield, R., Kurtz, N., Farrell, S., and Davidson, M., 2013. CryoSat-2 estimates of Arctic sea ice thickness and volume. Geophysical Research Letters, 40 (4): 732–737.

    Article  Google Scholar 

  • Lei, R. B., Li, N., Heil, P., Cheng, B., Zhang, Z., and Sun, B., 2014. Multiyear sea ice thermal regimes and oceanic heat flux derived from an ice mass balance buoy in the Arctic Ocean. Journal of Geophysical Research: Oceans, 119, 537–547.

    Google Scholar 

  • Manizza, M., Le Quéré, C., Watson, A. J., and Buitenhuis, E. T., 2005. Bio-optical feedbacks among phytoplankton, upper ocean physics and sea-ice in a global model. Geophysical Research Letters, 32: L05603, DOI:10.1029/2004GL020778.

    Article  Google Scholar 

  • Maykut, G. A., and McPhee, M. G., 1995. Solar heating of the Arctic mixed layer. Journal of Geophysical Research: Oceans, 100 C12): 24691–24703.

    Article  Google Scholar 

  • Maykut, G. A., and Untersteiner, N., 1971. Some results from a time-dependent thermodynamic model of sea ice. Journal of Geophysical Research, 76 (6): 1550–1575. DOI:10.1029/JC076i006p01550.

    Article  Google Scholar 

  • McPhee, M. G., 1992. Turbulent heat-flux in the upper ocean under sea ice. Journal of Geophysical Research, 97 C4): 5365–5379.

    Article  Google Scholar 

  • McPhee, M. G., 2002. Turbulent stress at the ice/ocean interface and bottom surface hydraulic roughness during the SHEBA drift. Journal of Geophysical Research, 107 C10): 8037, DOI: 10.1029/2000JC000633.

    Article  Google Scholar 

  • McPhee, M. G., and Stanton, T. P., 1996. Turbulence in the statically unstable oceanic boundary layer under Arctic leads. Journal of Geophysical Research, 101 C3): 6409–6428.

    Article  Google Scholar 

  • McPhee, M. G., and Untersteiner, N., 1982. Using sea ice to measure vertical heat flux in the ocean. Journal of Geophysical Research, 87: 2071–2074.

    Article  Google Scholar 

  • McPhee, M. G., Kikuchi, T., Morison, J. H., and Stanton, T. P., 2003. Ocean-to-ice heat flux at the north pole environmental observatory. Geophysical Research Letters, 30 (24): 2274, DOI: 10.1029/2003GL018580.

    Article  Google Scholar 

  • Morison, J. A., Aagaard, K., Falkner, K. K., Hatakeyama, K., Moritz, R., and Overland, J. E., 2002. North pole environmental observatory delivers early results. EOS, 83 (33): 360–361.

    Article  Google Scholar 

  • Nakawo, M., and Sinha, N. K., 1981. Growth rate and salinity profile of first-year sea ice in the high Arctic. Journal of Gla-ciology, 27 (96): 315–330.

    Article  Google Scholar 

  • Parkinson, C. L., and Cavalierieri, D. J., 2008. Arctic sea ice variability and trends, 1979–2006. Journal of Geophysical Research, 113: C07003, DOI: 10.1029/2007JC004558.

    Article  Google Scholar 

  • Parkinson, C. L., and Comiso, J. C., 2013. On the 2012 record low Arctic sea ice cover: Combined impact of preconditioning and an August storm. Geophysical Research Letters, 40(7): 1356–1361.

    Article  Google Scholar 

  • Pegau, W. S., and Paulson, C. A., 2001. The albedo of Arctic leads in summer. Annals of Glaciology, 33, 221–224.

    Article  Google Scholar 

  • Perovich, D. K., and Elder, B., 2002. Estimates of ocean heat flux at SHEBA. Geophysical Research Letters, 29 (9): 1344, DOI: 10.1029/2001GL014171.

    Article  Google Scholar 

  • Perovich, D. K., Elder, B. C., and Richter-Menge, J. A., 1997. Observations of the annual cycle of sea ice temperature and mass balance. Geophysical research letters, 24 (5): 555–558.

    Article  Google Scholar 

  • Perovich, D. K., Richter-Menge, J., Polashenski, C., Elder, B., Arbetter, T., and Brennick, O., 2014. Sea ice mass balance observations from the north pole environmental observatory. Geophysical Research Letters, 41: 2019–2025.

    Article  Google Scholar 

  • Perovich, D. K., Tucker, W. B., and Krishfield, R. A., 1989. Oceanic heat flux in the Fram Strait measured by a drifting buoy. Geophysical Research Letters, 16 (9): 995–998.

    Article  Google Scholar 

  • Peterson, A. K., Fer, I., McPhee, M. G., and Randelhoff, A., 2017. Turbulent heat and momentum fluxes in the upper ocean under Arctic sea ice. Journal of Geophysical Research: Oceans, 122, 1439–1456, DOI: 10.1002/2016JC012283.

    Google Scholar 

  • Rampal, P., Weiss, J., and Marsan, D., 2009. Positive trend in the mean speed and deformation rate of Arctic sea ice, 1979–2007. Journal of Geophysical Research, 114: C05013, DOI: 10.1029/2008JC005066.

    Google Scholar 

  • Richter-Menge, J. A., Perovich, D. K., Elder, B. C., Claffey, K., Rigor, I., and Ortmeyer, M., 2006. Ice mass balance buoys: A tool for measuring and attributing changes in the thickness of the Arctic sea-ice cover. Annals of Glaciology, 44, 205–210.

    Article  Google Scholar 

  • Rothrock, D. A., Percival, D. B., and Wensnahan, M., 2008. The decline in arctic sea-ice thickness: Separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research: Oceans, 113(C5): C05003.

    Article  Google Scholar 

  • Semtner Jr., A. J., 1976. A model for the thermodynamic growth of sea ice in numerical investigations of climate. Journal of Physical Oceanography, 6 (3): 379–389.

    Article  Google Scholar 

  • Shaw, W. J., Stanton, T. P., and McPhee, M. G., 2008. Estimates of surface roughness length in heterogeneous under-ice boundary layers, Journal of Geophysical Research: Oceans, 113: C08030, DOI: 10.1029/2007JC004550.

    Article  Google Scholar 

  • Shaw, W. J., Stanton, T. P., McPhee, M. G., Morison, J. H., and Martinson, D. G., 2009. Role of the upper ocean in the energy budget of Arctic sea ice during SHEBA. Journal of Geophysical Research: Oceans, 114: C06012.

    Google Scholar 

  • Spreen, G., Kaleschke, L., and Heygster, G., 2008. Sea ice remote sensing using AMSR-E 89 GHz channels. Journal of Geophysical Research, 113: C02S03, DOI: 10.1029/2005JC003384.

    Article  Google Scholar 

  • Stanton, T. P., Shaw, W. J., and Hutchings, J. K., 2012. Observational study of relationships between incoming radiation, open water fraction, and ocean-to-ice heat flux in the Transpolar Drift: 2002–2010. Journal of Geophysical Research, 117: C07005, DOI: 10.1029/2011JC007871.

    Article  Google Scholar 

  • Stroeve, J. C., Kattsov, V., Barrett, A., Serreze, M., Pavlova, T., Holland, M., and Meier, W. N., 2012. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophysical Research Letters, 39: L16502, DOI: 10.1029/2012GL052676.

    Article  Google Scholar 

  • Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A., 2014. Changes in Arctic melt season and implications forsea ice loss. Geophysical Research Letters, 41, 1216–1225, DOI: 10.1 002/2013GL058951.

    Article  Google Scholar 

  • Stroeve, J., Serreze, M., Drobot, S., Gearheard, S., Holland, M., Maslanik, J., and Scambos, T., 2008. Arctic sea ice extent plummets in 2007. Eos, Transactions American Geophysical Union, 89 (2): 13–14.

    Article  Google Scholar 

  • Timmermans, M. L., 2015. The impact of stored solar heat on Arctic sea ice growth. Geophysical Research Letters, 42, 6399–6406, DOI: 10.1002/2015GL0641.

    Article  Google Scholar 

  • Untersteiner, N., 1961. On the mass and heat budget of Arctic sea ice. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A, 12 (2): 151–182.

    Article  Google Scholar 

  • Vihma, T., 2014. Effects of Arctic sea ice decline on weather and climate: A Review. Surveys in Geophysics, 35, 1175–1214, DOI: 10.1007/s10712-014.9284-0.

    Article  Google Scholar 

  • Yen, Y. C., Cheng, K. C., and Fukusako, S., 1991. Review of intrinsic thermophysical properties of snow, ice, sea ice, and frost. Proceedings of the 3rd International Symposium on Cold Regions Heat Transfer. Fairbanks, 187–218.

    Google Scholar 

  • Zhao, J., and Cao, Y., 2011. Summer water temperature structures in upper Canada Basin and their interannual variation. Advances in Polar Science, 22 (4): 223–234.

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Basic Research Program of China (No. 2015CB953900), the National Natural Science Foundation of China (No. 413309 60), and the National Key Research and Development Plan (No. 2016YFC1402705)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinping Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L., Zhao, J. Estimation of Oceanic Heat Flux Under Sea Ice in the Arctic Ocean. J. Ocean Univ. China 18, 605–614 (2019). https://doi.org/10.1007/s11802-019-3877-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3877-7

Key words

Navigation