Skip to main content
Log in

Impact of Drain Effluent on Surficial Sediments in the Mediterranean Coastal Wetland: Sedimentological Characteristics and Metal Pollution Status at Lake Manzala, Egypt

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Surface sediments were collected from Lake Manzala, the Mediterranean coastal wetland located to the east of the Nile Delta, Egypt, to assess the effect of drain effluent on the spatial variations of sedimentary characteristics and heavy metal pollution. Grain-size compositions, textures, and heavy metal distribution patterns in sediments are presented using GIS technique. Results of the analysis of the sediment showed a clear effect of drain effluent, with an increase in fine fractions and homogeneous suspensions in transportation mode. Lake sediments were dominated by sandy mud textures, and mode of transportation was homogeneous suspension and rolling. Spatial distribution of heavy metals (Fe, Mn, Zn, Cu, Ni, Cr, and Pb) was studied in the lake’s surficial sediments, along with their relationship to drain effluent and their contamination status in the ecological system. Heavy metal pollution status was assessed by means of accepted sediment quality guidelines and contamination assessment methods (contamination factor, contamination degree, modified contamination degree, geo-accumulation, and enrichment factor). Among the determined heavy metals, Pb had the most ecological risk. Generally, the heavy metals in the surface sediments indicated pollution risk ranging from moderate to considerable, particularly, in those sites facing drains and inlets that had the highest toxic effluent. The results were interpreted by statistical means. A cluster analysis defined areas facing drain discharge and inlets as separated groups. ANOVA indicated that most of the sedimentation and studied metals directed this clustering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abd El-Karim, M. S., 2008. Monthly variations of phytoplankton communities in Lake Manzala. Journal of Global Veterinaria, 2 (6): 343–350.

    Google Scholar 

  • Abrahim, G. M. S., and Parker, R. J., 2007. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environmental Monitoring and Assessment, 136: 227–238, DOI: https://doi.org/10.1007/s10661-007-9678-2.

    Article  Google Scholar 

  • Ahmed, M. H., El Leithy, B. M., Thompson, J. R., Flower, R. J., Ramdani, M., Ayache, F., and Hassan, S. M., 2009. Application of remote sensing to site characterisation and environmental change analysis of North African coastal lagoons. Hydrobiologia, 622: 147–171.

    Article  Google Scholar 

  • Armid, A., Shinjob, R., Zaenia, A., Sanic, A., and Ruslan, R., 2014. The distribution of heavy metals including Pb, Cd and Cr in Kendari Bay surficial sediments. Marine Pollution Bulletin, 84: 373–378.

    Article  Google Scholar 

  • Aston, S. R., and Chester, R., 1973. The influence of suspended particles on the precipitation of iron in natural waters. Estuarin, Coastal and Marine Science, 1 (3): 225–231.

    Article  Google Scholar 

  • Bastami, K. D., Neyestani, M. R., Shemirani, F., Soltani, F., Haghparast, S., and Akbari, A., 2015. Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea. Marine Pollution Bulletin, 92: 237–243.

    Article  Google Scholar 

  • Blott, S. J., and Pye, K., 2001. Technical communication, gradistat: A grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes, 26 (11): 1237–1248.

    Article  Google Scholar 

  • Buat-Menard, P., and Chesselet, R., 1979. Variable influence of the atmospheric flux on the trace metal chemistry of oceanic suspended matter. Earth and Planetary Science Letters, 42: 398–411.

    Article  Google Scholar 

  • Buccolieri, A., Buccolieri, G., Cardellicchio, N., Dell’Atti, A., Di Leo, A., and Maci, A., 2006. Heavy metals in marine sediments of Taranto Gulf, Ionian sea, Southern Italy. Marine Chemistary, 99: 227–235.

    Article  Google Scholar 

  • Camargo, J. B. D. A., Cruz, A. C. F., Campos, B. G., Araujo, G. S., Fonseca, T. G., and Abessa, D. M. S., 2015. Use, development and improvements in the protocol of whole sediment toxicity identification evaluation using benthic copepods. Marine Pollution Bulletin, 91: 511–517.

    Article  Google Scholar 

  • Carver, R. E., 1971. Procedures in Sedimentary Petrology. John Wiley and Sons, New York, 1–653.

    Google Scholar 

  • C-EQG (Canadian Environmental Quality Guidelines), 2002. Summary table for soil quality guidelines. Canadian Council of Ministers of the Environment, 210.

  • Chen, C., Kao, C., Chen, C. F., and Dong, C., 2007. Distribution and accumulation of heavy metals in the sediments of Kaohsiung Harbor, Taiwan. Chemosphere, 66: 1431–1440.

    Article  Google Scholar 

  • Dan, S. F., Umoh, U. U., and Osabor, V. N., 2014. Seasonal variation of enrichment and contamination of heavy metals in the surface water of Qua Iboe River Estuary and adjoining creeks south-south Nigeria. Journal of Oceanography and Marine Science, 5: 45–54.

    Article  Google Scholar 

  • Dinakaran, J., and Krishnayya, N. S. R., 2011. Variations in total organic carbon and grain size distribution in ephemeral river sediments in western India. International Journal of Sediment Research, 26 (2): 239–246.

    Article  Google Scholar 

  • Dossis, P., and Warren, L. J., 1980. Distribution of heavy metals between minerals and organic debris in a contaminated marine sediment. In: Contaminants and Sediment. Volume 1. Fate and Transport, Case Studies, Modeling, Toxicity. Baker, R. A., ed., Ann Arbor Science, Michigan, 119–142.

    Google Scholar 

  • Draz, S, E. O., 1983. The texture and chemistry of the Nile sediments in the Rosetta Branch. Master thesis. Alexandria University.

    Google Scholar 

  • Duane, D. B., 1964. Significance of skewness in recent sediments, western pamlico sound, North California. Journal of Sedimentary Petrology, 34 (4): 864–874.

    Google Scholar 

  • Duce, R. A., Hoffmann, G. L., and Zoller, W. H., 1975. Atmospheric trace metals at remote northern and southern hemisphere sites. Pollution or Natural Science, 187: 59–61.

    Google Scholar 

  • El Wakeel, S. K., and Wahby, S. D., 1970. Bottom sediments of Lake Manzallah. Journal of Sedimentary Petrology, 40: 480–496.

    Article  Google Scholar 

  • El-Kady, A. A., Sweet, S. T., Wade, T. L., and Klein, A. G., 2015. Distribution and assessment of heavy metals in the aquatic environment of Lake Manzala, Egypt. Ecological Indicator, 58: 445–457.

    Article  Google Scholar 

  • El-Said, G. F., Draz, S. E. O., El-Sadaawy, M. M., and Moneer, A. A., 2014. Sedimentology, geochemistry, pollution status and ecological risk assessment of some heavy metals in surficial sediments of an Egyptian lagoon connecting to the Mediterranean Sea. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 49 (9): 1029–1044.

    Article  Google Scholar 

  • Environment Canada, 2002. Canadian sediment quality guide-lines for the protection of aquatic life: Summary table. http://www.doeal.gov/SWEIS/OtherDocuments/328%20envi%20canada%202002.pdf.

  • Farhat, I. H., and Salem, G. S., 2015. Effect of flooding on distribution and mode of transportation of Lake Nasser sediments, Egypt. Egyptian Journal of Aquatic Research, 41: 165–176.

    Article  Google Scholar 

  • Feng, H., Jiang, H., Gao, W., Weinstein, M. P., Zhang, Q., Zhang, W., Yu, L., Yuan, D., and Tao, J., 2011. Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. Journal of Environmental Management, 92: 1185–1197.

    Article  Google Scholar 

  • Flower, R. J., Appleby, P. G., Thompson, J. R., Ahmed, M. H., Ramdani, M., Chouba, L., Rose, N., Rochester, R., Ayache, F., Kraiem, M. M., Elkhiati, N., El Kafrawy, S., Yang, H., and Rasmussen, E. K., 2009. Sediment distribution and accumulation in lagoons of the Southern Mediterranean Region (the MELMARINA Project) with special reference to environmental change and aquatic ecosystems. Hydrobiologia, 622: 85–112, DOI: https://doi.org/10.1007/s10750-008-9674-8.

    Article  Google Scholar 

  • Folk, R. L., 1954. The distinction between grain size and mineral composition in sedimentary-rock nomenclature. Journal of Geology, 62 (4): 344–359.

    Article  Google Scholar 

  • Folk, R. L., and Ward, W., 1957. Brazos River bar, a study in the significance of grain size parameters. Journal of Sedimentary Petrology, 27: 3–26.

    Article  Google Scholar 

  • Folk, R. L., 2014. Petrology of Sedimentary Rocks. Hemphills Publication Company, Austin, Texas, 170.

    Google Scholar 

  • Friedman, G. M., and Sanders, J. E., 1978. Principles of Sedimentology. John Wiley, New York, 1–792.

    Google Scholar 

  • Gaudette, E., Flight, R., Toner, L., and Folger, W., 1974. An inexpensive titration method for the determination of organic carbon in recent sediments. Journal of Sedimentary Petrology, 44: 249–253.

    Google Scholar 

  • Goher, M. E., Farhat, I. H., Abdo, M. H., and Salem, G. S., 2014. Metal pollution assessment in the surface sediment of Lake Nasser, Egypt. Egyptian Journal of Aquatic Research, 40: 213–224, https://doi.org/10.1016/j.ejar.2014.09.004.

    Article  Google Scholar 

  • Gong, Q., Deng, J., Xiang, Y., Wang, Q., and Yang, L., 2008. Calculating pollution indices by heavy etals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19 (3): 230–241.

    Article  Google Scholar 

  • Grathwohl, P., 1990. Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations. Environmental Science and Technology, 24 (11): 1687–1693.

    Article  Google Scholar 

  • Hakanson, L., 1980. An ecological risk index for aquatic pollution control: A sedimentological approach. Water Research, 14: 975–1001.

    Article  Google Scholar 

  • Hakanson, L., and Jansson, M., 1983. Principles of Lake Sedimentology. Springer, Berlin, 1–316.

    Book  Google Scholar 

  • Hassouna, A. F., 1996. Some environmental studies on the water and sediments in the River Nile in Egypt. PhD thesis. Cairo University.

    Google Scholar 

  • Huang, K. M., and Lin, S., 2003. Consequences and implications of heavy metal spatial variations in sediments of the Keelung River drainage basin, Taiwan. Chemosphere, 53: 1113–1121.

    Article  Google Scholar 

  • Ji, Y. Q., Feng, Y. C., Wu, J. H., Zhu, T., Bai, Z. P., and Duan, C. Q., 2008. Using geoaccumulation index to study source profiles of soil dust in China. Journal of Environmental Sciences, 20: 571–578.

    Article  Google Scholar 

  • Jin, X., Liu, F., Wang, Y., Zhang, L., Li, Z., Wang, Z., Giesy, J. P., and Wang, Z., 2015. Probabilistic ecological risk assessment of copper in Chinese offshore marine environments from 2005 to 2012. Marine Pollution Bulletin, 94: 96–102.

    Article  Google Scholar 

  • Jones, D. S., Sutter, G. W., and Hull, R. N., 1997. Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 Revision, ES/ER/TM-95/R4. Oak Ridge National Laboratory, prepared for the US Department of Energy, 48.

  • Kaufman, L., and Rousseeuw, P. J., 2009. Finding Groups in Data: An Introduction to Cluster Analysis. Volume 344. John Wiley and Sons, New York, 1–342.

    Google Scholar 

  • Kouadia, L., and Trefry, J. H., 1987. Sediment trace metal contamination in the Ivory Coast West Africa. Water, Air and Soil Pollution, 32: 145–154.

    Google Scholar 

  • Kwon, Y. T., Lee, C. W., and Ahn, B. Y., 2001. Sedimentation pattern and sediments bioavailability in a wastewater discharging area by sequential metal analysis. Microchemical Journal, 68 (2–3): 135–141.

    Article  Google Scholar 

  • Lario, J., Alonso-Azcárate, J., Spencer, C., Zazo, C., Goy, J. L., Cabero, A., Dabrio, C. J., Borja, F., Borja, C., Civis, J., and García-Ródriguez, M., 2016. Evolution of the pollution in the Piedras River natural site (Gulf of Cadiz, southern Spain) during the Holocene. Environmental Earth Sciences, 75: 481–495, DOI: https://doi.org/10.1007/s12665-016-5344-8.

    Article  Google Scholar 

  • Ludwikowska-Kędzia, M., 2000. Evolution of the Middle Segment of the Belnianka River Valley in the Late Glacial and Holocene. Wydawnictwo Akademickie Dialog Press, Warsaw, 1–180.

    Google Scholar 

  • Ma, X., Zuo, H., Tian, M., Zhang, L., Meng, J., Zhou, X., Min, N., Chang, X., and Liu, Y., 2016. Assessment of heavy metals contamination in sediments from three adjacent regions of the Yellow River using metal chemical fractions and multivariate analysis techniques. Chemosphere, 144: 264–272.

    Article  Google Scholar 

  • Marcinkowski, B., and Mycielska-Dowgiałło, E., 2013. Heavy-mineral analysis in Polish investigations of Quaternary deposits: A review. Geologos, 19 (1–2): 5–23.

    Article  Google Scholar 

  • Mohiuddin, K. M., Zakir, H. M., Otomo, K., Sharmin, S., and Shikazono, N., 2010. Geochemical distribution of trace metal pollutants in water and sediments of downstream of an urban river. International Journal of Environmental Science Technology, 7 (1): 17–28.

    Article  Google Scholar 

  • Müller, G., 1969. Index of geoaccumulation in sediments of the Rhine River. Journal of Geology, 2: 108–118.

    Google Scholar 

  • Müller, G., 1981. The heavy metal pollution of the sediments of Neckars and its tributary: A stocktaking. Chemiker-Zeitung, 105: 157–164.

    Google Scholar 

  • Mycielska-Dowgiałło, E., and Ludwikowska-Kędzia, M., 2011. Alternative interpretationof grain-size data from Quaternary deposits. Geologos, 17 (4): 189–203, DOI: https://doi.org/10.2478/v10118-011-0010-9.

    Google Scholar 

  • Ntakirutimana, T., Du, G., Guo, J. S., Gao, X., and Huang, L., 2013. Pollution and potential ecological risk assessment of heavy metals in a lake. Polish Journal of Environmental Studies, 22 (4): 1129–1134.

    Google Scholar 

  • Palma, P., Ledo, L., and Alvarenga, P., 2015. Assessment of trace element pollution and its environmental risk to freshwater sediments influenced by anthropogenic contributions: The case study of Alqueva reservoir (Guadiana Basin). Catena, 128: 174–184.

    Article  Google Scholar 

  • Passega, R., 1957. Texture as a characteristic of clastic deposition. Bulletin of the American Association of Petroleum Geologists, 41: 1952–1984.

    Google Scholar 

  • Passega, R., 1964. Grain-size representation by CM patterns as a geological tool. Journal of Sedimentary Petrology, 34: 830–847.

    Article  Google Scholar 

  • Passega, R., and Byramjee, R., 1969. Grain-size image of clastic deposits. Sedimentology, 13: 233–252.

    Article  Google Scholar 

  • Pereira, T. D. S., Moreira, T. A., Oliveira, M. C., Mariana, C., Wilton, A. C. S., Marcos, A., and Gilson, C. C., 2015. Distribution and ecotoxicology of bioavailable metals and as in surface sediments of Paraguaçu Estuary, Todos os Santos Bay, Brazil. Marine Pollution Bulletin, 99 (1–2): 166–177, https://doi.org/10.1016/j.marpolbul.2015.07.031.

    Article  Google Scholar 

  • Pettijohn, F. J., 1975. Sedimentary Rocks. 3rd edition. Harper & Row, New York, 1–628.

    Google Scholar 

  • Pisarska-Jamroży, M., 2013. Varves and megavarves in the Eberswalde Valley (NE Germany) — A key for the interpretation of glaciolimnic processes. Sedimentary Geology, 291: 84–96.

    Article  Google Scholar 

  • Rivera, M. B., Fernandez-Caliani, J. C., and Giraldez, M. I., 2015. Geoavailability of lithogenic trace elements of environmental concern and supergene enrichment in soils of the Sierra de Aracena Natural Park (SW Spain). Geoderma, 259–260: 164–173.

    Article  Google Scholar 

  • Román-Sierra, J., Navarro, M., Muñoz-Perez, J. J., and Gomezpina, G., 2011. Turbidity and other effects resulting from Trafalgar sandbank dredging and Palmar beach nourishment. Journal of Waterway, Port, Coastal and Ocean Engineering, 137 (6): 332–343.

    Article  Google Scholar 

  • Saher, N. U., and Siddiqui, A. S., 2016. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach. Marine Pollution Bulletin, 105: 403–410, https://doi.org/10.1016/j.marpolbul.2016.02.012.

    Article  Google Scholar 

  • Sakan, S. M., Djordjevic, D. S., Manojlovic, D. D., and Polic, P. S., 2009. Assessment of heavy metal pollutants accumulation in the Tisza River sediments. Journal of Environmental Management, 90 (11): 3382–3390.

    Article  Google Scholar 

  • Shahin, M., 1985. Hydrology of the Nile Basin. Elsevier, Amsterdam, 1–564.

    Google Scholar 

  • Sinex, S. A., and Helz, G. R., 1981. Regional geochemistry of trace elements in Chesapeake Bay sediments. Environmental Geology, 3: 315–323.

    Article  Google Scholar 

  • Souza, I. D., Rocha, L. D., Morozesk, M., Bonomo, M. M., Arrivabene, H. P., Duarte, I. D., Furlan, L. M., Monferran, M. V., Mazik, K., Elliott, M., Matsumoto, S., Milanez, C. R. D., Wunderlin, D. A., and Fernandes, M. N., 2015. Changes in bioaccumulation and translocation patterns between root and leafs of Avicennia schaueriana as adaptive response to different levels of metals in mangrove system. Marine Pollution Bulletin, 94: 176–184.

    Article  Google Scholar 

  • Srivastava, A. K., Ingle, P. S., Lunge, H. S., and Khare, N., 2012. Grain-size characteristics of deposits derived from different glacigenic environments of the Schirmacher Oasis, East Antarctica. Geologos, 18 (4): 251–266.

    Article  Google Scholar 

  • Stanley, D. J., and Warne, A. G., 1993. Nile Delta: Recent geological evolution and human impact. Science, 260: 628–634.

    Article  Google Scholar 

  • Sutherland, R. A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39: 611–627.

    Article  Google Scholar 

  • Szmańda, J., 2007. Grain-transport conditions: An interpretative comparison on the analysis of C/M diagrams and cumulative curve diagrams, with the overbank deposits of the Vistula River, Toruń, as an example. In: Rekonstrukcja Dynamiki Procesów Geomorfologicznych-Formy Rzeźby i osad y. Smolska, E., and Giriat, D., eds., Uniwersytet Warszawski Wydział Geografii i Studiów Regionalnych, Komitet Badań Czwartorzędu, 367–376.

  • Turekian, K. K., and Wedepohl, K. H., 1961. Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin, 72: 175–192.

    Article  Google Scholar 

  • Thompson, J. R., Flower, R. J., Ramdani, M., Ayache, F., Ahmed, M. H., Rasmussen, E. K., and Petersen, O. S., 2009. Hydrological characteristics of three North African coastal lagoons: Insights from the MELMARINA project. Hydrobiologia, 622 (1): 45–84, DOI: https://doi.org/10.1007/s10750-008-9680-x.

    Article  Google Scholar 

  • US EPA (U.S. Environmental Protection Agency), 1999. Screening level ecological risk assessment protocol for hazardous waste combustion facilities, Vol. 3, Appendix E: Toxicity reference values. EPA530-D99-001C.

  • Wang, H., Wang, J., Liu, R., Yu, W., and Shen, Z., 2015. Spatial variation, environmental risk and biological hazard assessment of heavy metals in surface sediments of the Yangtze River Estuary. Marine Pollution Bulletin, 93: 250–258.

    Article  Google Scholar 

  • Zahran, M. A., El-Amier, Y. A., Elnaggar, A. A., Abd El-Azim, H., and El-Alfy, M. A., 2015. Assessment and distribution of heavy metals pollutants in Manzala Lake, Egypt. Journal of Geoscience and Environment Protection, 3: 107–122, https://doi.org/10.4236/gep.2015.36017.

    Article  Google Scholar 

  • Zakir, H. M., Shikazono, N., and Otomo, K., 2008. Geochemical distribution of trace metals and assessment of anthropogenic pollution in sediments of old Nakagawa River, Tokyo, Japan. American Journal of Environmental Sciences, 4 (6): 661–672.

    Google Scholar 

  • Zhang, J., and Liu, C. L., 2002. Riverine composition and estuarine geochemistry of particulate metals in China — Weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54 (6): 1051–1070.

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to thank Dr. Walid Ali for his helpful comments at various stages in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan I. Farhat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farhat, H.I. Impact of Drain Effluent on Surficial Sediments in the Mediterranean Coastal Wetland: Sedimentological Characteristics and Metal Pollution Status at Lake Manzala, Egypt. J. Ocean Univ. China 18, 834–848 (2019). https://doi.org/10.1007/s11802-019-3608-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-019-3608-0

Key words

Navigation