Skip to main content
Log in

Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers

  • Published:
Journal of Ocean University of China Aims and scope Submit manuscript

Abstract

Seven microsatellite markers were used to evaluate the genetic diversity and differentiation of seven stocks of Litopenaeus vannamei, which were introduced from Central and South America to China. All seven microsatellite loci were polymorphic, with polymorphism information content (PIC) values ranging from 0.593 to 0.952. Totally 92 alleles were identified, and the number of alleles (Na) and effective alleles (Ne) varied between 4 and 21 and 2.7 and 14.6, respectively. Observed heterozygosity (H o) values were lower than the expected heterozygosity (H e) values (0.526–0.754), which indicated that the seven stocks possessed a rich genetic diversity. Thirty-seven tests were detected for reasonable significant deviation from Hardy-Weinberg equilibrium. F is values were positive at five loci, suggesting that there was a relatively high degree of inbreeding within stocks. Pairwise F st values ranged from 0.0225 to 0.151, and most of the stock pairs were moderately differentiated. Genetic distance and cluster analysis using UPGMA revealed a close genetic relationship of L. vannamei between Pop2 and Pop3. AMOVA indicated that the genetic variation among stocks (11.3%) was much lower than that within stocks (88.7%). Although the seven stocks had a certain degree of genetic differentiation and a rich genetic diversity, there is an increasing risk of decreased performance due to inbreeding in subsequent generations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antoro, S., Na-Nakorn, U., and Koedprang, W., 2005. Study of genetic diversity of orange-spotted grouper, Epinephelus coiodes, from Thailand and Indonesia using microsatellite markers. Marine Biotechnology, 8: 1–10.

    Google Scholar 

  • Crow, A. J., and Kimura, M., 1965. Evolution in Sexual and Asexual Population. The University of Chicago Press, USA, 439–450.

    Google Scholar 

  • Dong, S., Kong, J., Zhang, Q., Liu, P., Meng, X., and Wang, R., 2006. Pedigree tracing of Fenneropenaeus chinensis by microsatellite DNA markers genotyping. Acta Oceanologica Sinica, 25(5): 151–157.

    Google Scholar 

  • Dixon, T. J., Coman, G. J., Arnold, S. J., Sellars, M. J., Lyons, R. E., Dierens, L., Preston, N. P., and Li, Y., 2008. Shifts in genetic diversity during domestication of Black Tiger shrimp, Penaeus monodon, monitored using two multiplexed microsatellite systems. Aquaculture, 283: 1–6.

    Article  Google Scholar 

  • Excoffier, L., Laval, G., and Schneider, S., 2005. Arlequin (version 3.0), an integrated software package for population genetics data analysis. Evolutionary Bioinformatic, 1: 47–50.

    Google Scholar 

  • Hara, M., and Sekino, M., 2003. Efficient detection of parentage in a cultured Japanese flounder Paralichthys olivaceus using microsatellite DNA marker. Aquaculture, 217: 107–114.

    Article  Google Scholar 

  • Hartl, D. L., and Clark, A. G., 1989. Principles of Population Genetics. 2nd edition. Sinauer Associates, Sunderland, Massachusetts, 405pp.

    Google Scholar 

  • Holthuis, L. B., 1980. Shrimps and Prawns of the World. FAO Species Catalogue, Vol. 1. Food and Agriculture Organization of the United Nations, Rome, 271pp.

    Google Scholar 

  • Hou, S., Ma, A., Wang, X., Huang, Z., Xue, B., Yang, Z., and Qu, J., 2011. Analysis of genetic structure among four different stocks of turbot Scophthalmus maximus using microsatellite technique. Progress in Fishery Sciences, 32(1): 16–23.

    Google Scholar 

  • Lima, A. P. S., Silva, S. M. B. C., Oliveira, K. K. C., Maggioni, R., and Coimbra, M. R. M., 2010. Genetics of two marine shrimp hatcheries of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) in Pernambuco, Brazil. Ciência Rural, 40(2): 325–331.

    Google Scholar 

  • Luan, S., Kong, J., and Wang, Q., 2006. Genetic variation of wild and cultured populations of the Kuruma prawn Marsupenaeus japonicas (Bate 1888) using microsatellites. Aquaculture Research, 37: 785–792.

    Article  Google Scholar 

  • Ma, C., Ma, H., Ma, L., and Yang, K., 2011. Microsatellite analysis on genetic variation of imported Litopenaeus vannamei population and cultured stocks. Marine Fisheries, 33(1): 1–8.

    Google Scholar 

  • Marshall, T. C., Slate, J., Kruuk, L. E. B., and Pemberton, J. M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7: 639–655.

    Article  Google Scholar 

  • Meehan, D., Xu, Z., Zuniga, G., and Alcivar-Warren, A., 2003. High frequency and large number of polymorphic microsatellites in cultured shrimp, Penaeus (Litopenaeus) vannamei [Crustacea: Decapoda]. Marine Biotechnology, 5: 311–330.

    Article  Google Scholar 

  • Meng, X., Kong, J., Wang, Q., and Liu, P., 2008. Study on seven geographic populations of prawn Fenneropennens chinensis based on microsatellite DNA. Marine Fisheries Research, 29(5): 1–10.

    Google Scholar 

  • Moss, D. R., and Arce, S. M., 2004. Research Reveals Inbreeding Depression in Pacific White Shrimp. Global Aquaculture Advocate, 50–51.

    Google Scholar 

  • Moss, D. R., Arce, S. M., Otoshi, C. A., Doyle, R. W., and Moss, S. M., 2007. Effects of inbreeding on survival and growth of Pacific white shrimp Penaeus (Litopenaeus) vannamei. Aquaculture, 272S1: S30–S37.

    Article  Google Scholar 

  • Nei, M., 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 89: 583–590.

    Google Scholar 

  • Norris, A. T., Bradley, D. G., and Cunningham, E. P., 2000. Parentage and relatedness determination in farmed Atlantic salmon (Salmo salar) using microsatellite markers. Aquaculture, 182: 73–83.

    Article  Google Scholar 

  • Perez-Enriquez, R., Hernández-Martínez, F., and Cruz, P., 2009. Genetic diversity status of White shrimp Penaeus (Litopenaeus) vannamei broodstock in Mexico. Aquaculture, 297: 44–50.

    Article  Google Scholar 

  • Perez-Velazquez, M., Davis, D. A., Roy, L. A., and González-Félix, M. L., 2011. Effects of water temperature and Na+: K+ ratio on physiological and production parameters of Litopenaeus vannamei reared in low salinity water. Aquaculture, 342–343: 13–17.

    Google Scholar 

  • Raymond, M., and Rousset, F., 1995. GENEPOP: Population genetics software for exact test and ecumenicism. Journal of Heredity, 86: 248–249.

    Google Scholar 

  • Sbordoni, V., La Rosa, G., Mattoccia, M., Cobolli-Sbordoni, M., and De Matthaeis, E., 1987. Genetic changes in seven generations of hatchery stocks of the Kuruma shrimp, Penaeus japonicus (Crustacea, Decapoda). In: Selection, Hybridization and Genetic Engineering in Aquaculture. Tiews, K., ed., Heeneman Verlag, Berlin, 143–155.

    Google Scholar 

  • Song, C., Li, J., Liu, P., Chen, P., and Gao, B., 2011. Microsatellite analysis of genetic diversity in 4 wild populations of Charybdis japonica. Journal of Fisheries of China, 35(7): 985–991.

    Article  Google Scholar 

  • Soto-Hernandez, J., and Grihalava-Chon, J. M., 2004. Genetic differentiation in hatchery strains and wild white shrimp Penaeus (Litopenaeus) vannamei (Boone, 1931) from northwest Mexico. Aquaculture International, 12: 593–601.

    Article  Google Scholar 

  • Sugaya, T., Ikeda, M., Mori, H., and Taniguchi, N., 2002. Inheritance mode of microsatellite DNA markers and their use for kinship estimation in Kuruma prawn Penaeus haponicus. Fisherises Science, 68: 299–305.

    Article  Google Scholar 

  • Sun, G. L., Diaz, O., Salomon, B., and Von Bothmer, R., 2001. Genetic diversity and structure in a natural Elymus caninus population from Denmark based on microsatellite and isozyme analyses. Plant Systematics and Evolution, 227: 235–244.

    Article  Google Scholar 

  • Supungul, P., Klinbunga, S., Pichyangkura, R., Jitrapakdee, S., Hirono, I., Aoki, T., and Tassanakajon, A., 2002. Identification of immune-related genes in hemocytes of black tiger shrimp (Penaeus monodon). Marine Biotechnology, 4: 487–494.

    Article  Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10): 2731–2739.

    Article  Google Scholar 

  • Tseng, D., Ho, P., Huang, S., Cheng, S., Shiu, Y., Chiu, C., and Liu, C., 2009. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20. Fish & Shellfish Immunology, 26: 339–344.

    Article  Google Scholar 

  • Valles-Jimenez, R., Cruz, P., and Perez-Enriquez, R., 2005. Population genetic structure of Pacific white shrimp (Litopenaeus vannamei) from Mexico to Panama: Microsatellite DNA variation. Marine Biotechnology, 6: 475–484.

    Article  Google Scholar 

  • Wang, H., Wu, C., Zhang, L., and Xiang, J., 2006. The application of microsatellite markers for parentage determination in selective breeding of Pacific white shrimp (Litopenaeus vannamei). Hereditas, 28(2): 179–183.

    Google Scholar 

  • Wang, S., Hard, J. J., and Utter, F., 2002. Salmonid inbreeding: A review. Reviews in Fish Biology and Fisheries, 11: 301–319.

    Article  Google Scholar 

  • Wang, W., 2008. I Genetic mapping of the chinese shrimp Fenneropenaeus chinensis using AFLP markers and commercial traits QTL mapping. II Genetic linkage mapping using AFLP markers and primarily study on sex-determination of bluegill sunfish (Lepomis macrochirus). Qingdao, Ocean University of China, 66–67.

    Google Scholar 

  • Ward, R. D., Ovenden, J. R., Meadows, J. R. S., Grewe, P. M., and Lehnert, S. A., 2006. Population genetic structure of the brown tiger prawn, Penaeus esculentus, in tropical northern Australia. Marine Biology, 148(3): 599–607.

    Article  Google Scholar 

  • Wright, S., 1978. Evolution and the Genetics of Populations Variability Within and Among Natural Populations. University of Chicago Press, Chicago, IL, 80–89.

    Google Scholar 

  • Xu, Z., Primavera, J. H., Pena, L. D., Priscilla, P., Belak, H., and Alcivar-Warren, A., 2001. Genetic diversity of wild and cultured black tiger shrimp (Penaeus monodon) in the Philippines using microsatellites. Aquaculture, 199: 13–40.

    Article  Google Scholar 

  • Yeh, F. C., Boyle, T., Yang, R., Ye, Z., and Xian, J., 1999. POPGENE Version 1.31. A Microsoft Window Based Freeware for Population Genetic Analysis. University of Alberta, Edmonton, 1–28.

    Google Scholar 

  • Zhang, T., Kong, J., Wang, W., and Wang, Q., 2010. Genetic variability assessed by microsatellites in the breeding populations of the shrimp Penaeus (Fenneropenaeus) chinensis in China. Aquaculture, 310: 229–233.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Wang, W., Li, W. et al. Analysis of genetic diversity and differentiation of seven stocks of Litopenaeus vannamei using microsatellite markers. J. Ocean Univ. China 13, 647–656 (2014). https://doi.org/10.1007/s11802-014-2208-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11802-014-2208-2

Key words

Navigation