Skip to main content
Log in

Energy transmittance of focused femtosecond pulses at different air pressures

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Transmission of intense femtosecond laser pulses in air is accompanied by energy depletion. By measuring the transmitted spectra of the focused femtosecond pulses in air, we study the influence of air pressure and initial pulse energy on the spectra around the central wavelength (800 nm) after the interaction of the focused femtosecond laser with air. On this basis, the energy transmittance of the central wavelength of the femtosecond pulses is obtained. It is found that as the air pressure is lower than 1 kPa, the transmitted spectra of focused femtosecond pulses change with the pressure, but there is almost no energy depletion, while as the air pressure is higher than 1 kPa, femtosecond filamentation occurs and the energy transmittance of the central wavelength of the femtosecond pulses decreases with the increase of air pressure and pulse energy. According to the different regimes (i.e., nonfilamentation, and filamentation regimes), we discuss the effect of energy conversion and transfer on the energy transmittance. This work can help to understand the energy depletion during the transmission of ultrashort intense laser pulses in air and provide a guidance for the practical applications of femtosecond filamentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. COUAIRON A, MYSYROWICZ A. Femtosecond filamentation in transparent media[J]. Physics reports, 2007, 441(2–4): 47–189.

    Article  ADS  Google Scholar 

  2. DURAND M, HOUARD A, PRADE B, et al. Kilometer range filamentation[J]. Optics express, 2013, 21(22): 26836–26845.

    Article  ADS  Google Scholar 

  3. RODRIGUEZ R, BOURAYOU R, MÉJEAN G, et al. Kilometric-range nonlinear propagation of femtosecond laser pulses[J]. Physical review E, 2004, 69(3): 036607.

    Article  ADS  Google Scholar 

  4. DICAIRE I, JUKNA V, PRAZ C, et al. Spaceborne laser filamentation for atmospheric remote sensing[J]. Laser & photonics reviews, 2016, 10(3): 481–493.

    Article  ADS  Google Scholar 

  5. XU H, CHENG Y, CHIN S L, et al. Femtosecond laser ionization and fragmentation of molecules for environmental sensing[J]. Laser & photonics reviews, 2015, 9(3): 275–293.

    Article  ADS  Google Scholar 

  6. HOUARD A, WALCH P, PRODUIT T, et al. Laser-guided lighting[J]. Nature photonics, 2023: 1–5.

  7. KOSAREVA O G, MOKROUSOVA D V, PANOV N A, et al. Remote triggering of air-gap discharge by a femtosecond laser filament and postfilament at distances up to 80 m[J]. Applied physics letters, 2021, 119(4): 041103.

    Article  ADS  Google Scholar 

  8. ROHWETTER P, KASPARIAN J, STELMASZCZYK K, et al. Laser-induced water condensation in air[J]. Nature photonics, 2010, 4(7): 451–456.

    Article  ADS  Google Scholar 

  9. RAN L, DENG Z Z, JU J J, et al. Femtosecond filamentation induced particles and their cloud condensation nuclei activity[J]. Atmospheric environment, 2019, 206: 271–279.

    Article  ADS  Google Scholar 

  10. SU Y, WANG S, YAO D, et al. Stand-off fabrication of irregularly shaped, multi-functional hydrophobic and antireflective metal surfaces using femtosecond laser filaments in air[J]. Applied surface science, 2019, 494: 1007–1012.

    Article  ADS  Google Scholar 

  11. LIAO K, WANG W, MEI X, et al. Fabrication of millimeter-scale deep microchannels in fused silica by femtosecond filamentation effect[J]. Optics and laser technology, 2021, 142: 107201.

    Article  Google Scholar 

  12. QUINN M N, JUKNA V, EBISUZAKI T, et al. Space-based application of the CAN laser to LIDAR and orbital debris remediation[J]. The European physical journal special topics, 2015, 224(13): 2645–2655.

    Article  ADS  Google Scholar 

  13. SCHELLER M, MILLS M S, MIRI M A, et al. Externally refuelled optical filaments[J]. Nature photonics, 2014, 8(4): 297–301.

    Article  ADS  Google Scholar 

  14. FENG Z F, LAN J, LI W, et al. A long-distance two-color filament produced by three collinear femtosecond pulses in air[J]. Optics communications, 2020, 474: 126167.

    Article  Google Scholar 

  15. LI S, SUI L, LI S, et al. Filamentation induced by collinear femtosecond double pulses with different wavelengths in air[J]. Physics of plasmas, 2015, 22(9): 093113.

    Article  ADS  Google Scholar 

  16. BODROV S, ALEKSANDROV N, TSAREV M, et al. Effect of an electric field on air filament decay at the trail of an intense femtosecond laser pulse[J]. Physical review E, 2013, 87(5): 053101.

    Article  ADS  Google Scholar 

  17. SHUMAKOVA V, ALIŠAUSKAS S, MALEVICH P, et al. Chirp-controlled filamentation and formation of light bullets in the mid-IR[J]. Optics letters, 2019, 44(9): 2173–2176.

    Article  ADS  Google Scholar 

  18. ZHANG H, ZHANG Y, LIN S, et al. Influence of pressure on spectral broadening of femtosecond laser pulses in air[J]. Physics of plasmas, 2021, 28(4): 043302.

    Article  ADS  Google Scholar 

  19. MÉCHAIN G, OLIVIER T, FRANCO M, et al. Femtosecond filamentation in air at low pressures. Part II: laboratory experiments[J]. Optics communications, 2006, 261(2): 322–326.

    Article  ADS  Google Scholar 

  20. ZHOKHOV P A, ZHELTIKOV A M. Scaling laws for laser-induced filamentation[J]. Physical review A, 2014, 89(4): 043816.

    Article  ADS  Google Scholar 

  21. LIN S, ZHANG Y, ZHANG H, et al. Femtosecond laser-induced nitrogen fluorescence emission at different air pressures[J]. Physics of plasmas, 2021, 28(7): 073302.

    Article  ADS  Google Scholar 

  22. LI S Y, GUO F M, SONG Y, et al. Influence of group-velocity-dispersion effects on the propagation of femtosecond laser pulses in air at different pressures[J]. Physical review A, 2014, 89(2): 023809.

    Article  ADS  Google Scholar 

  23. TALEBPOUR A, ABDEL-FATTAH M, BANDRAUK A D, et al. Spectroscopy of the gases interacting with intense femtosecond laser pulses[J]. Laser physics, 2001, 11(1): 68–76.

    Google Scholar 

  24. MITRYUKOVSKIY S, LIU Y, DING P, et al. Plasma luminescence from femtosecond filaments in air: evidence for impact excitation with circularly polarized light pulses[J]. Physical review letters, 2015, 114(6): 063003.

    Article  ADS  Google Scholar 

  25. POPMINTCHEV T, CHEN M C, POPMINTCHEV D, et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers[J]. Science, 2012, 336(6086): 1287–1291.

    Article  ADS  MathSciNet  Google Scholar 

  26. AHMMED K M T, GRAMBOW C, KIETZIG A M. Fabrication of micro/nano structures on metals by femtosecond laser micromachining[J]. Micromachines, 2014, 5(4): 1219–1253.

    Article  Google Scholar 

  27. SOLLAPUR R, KARTASHOV D, ZÜRCH M, et al. Resonance-enhanced multi-octave supercontinuum generation in antiresonant hollow-core fibers[J]. Light-science & applications, 2017, 6(12): e17124.

    Article  Google Scholar 

  28. HEYL C M, COUDERT-ALTEIRAC H, MIRANDA M, et al. Scale-invariant nonlinear optics in gases[J]. Optica, 2016, 3(1): 75–81.

    Article  ADS  Google Scholar 

  29. KOSAREVA O G, LIU W, PANOV N A, et al. Can we reach very high intensity in air with femtosecond pW laser pulses?[J]. Laser physics, 19: 1776–1792.

  30. TALEBPOUR A, YANG J, CHIN S L. Semi-empirical model for the rate of tunnel ionization of N2 and O2 molecule in an intense Ti: sapphire laser pulse[J]. Optics communications, 1999, 163(1–3): 29–32.

    Article  ADS  Google Scholar 

  31. ARNOLD B R, ROBERSON S D, PELLEGRINO P M. Excited state dynamics of nitrogen reactive intermediates at the threshold of laser induced filamentation[J]. Chemical physics, 2012, 405: 9–15.

    Article  ADS  Google Scholar 

  32. XU H L, AZARM A, BERNHARDT J, et al. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air[J]. Chemical physics, 2009, 360(1–3): 171–175.

    Article  ADS  Google Scholar 

  33. KELDYSH L V. Ionization in the field of a strong electromagnetic wave[J]. Soviet physics JETP, 1965, 20(5): 1307–1314.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suyu Li.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.11704145 and 11974138).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Yu, M., Cai, X. et al. Energy transmittance of focused femtosecond pulses at different air pressures. Optoelectron. Lett. 19, 605–613 (2023). https://doi.org/10.1007/s11801-023-3037-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-023-3037-6

Document code

Navigation