Skip to main content

Advertisement

Log in

Deep learning enables temperature-robust spectrometer with high resolution

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Traditional multi-mode fiber spectrometers rely on algorithms to reconstruct the transmission matrix of the fiber, facing the challenge that the same wavelength can lead to many totally de-correlated speckle patterns as the transfer matrix changes rapidly with environment fluctuations (typically temperature fluctuation). In this manuscript, we theoretically propose a multi-mode-fiber (MMF) based, artificial intelligence assisted spectrometer which is ultra-robust to temperature fluctuation. It has been demonstrated that the proposed spectrometer can reach a resolution of 0.1 pm and automatically reject the noise introduced by temperature fluctuation. The system is ultra-robust and with ultra-high spectral resolution which is beneficial for real life applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KONG S, WIJNGAARDS D, WOLFFENBUTTEL R. Infrared micro-spectrometer based on a diffraction grating[J]. Sensors and actuators A: physical, 2001, 92(1–3): 88–95.

    Article  Google Scholar 

  2. PÜGNER T, KNOBBE J, GRÜGER H. Near-infrared grating spectrometer for mobile phone applications[J]. Applied spectroscopy, 2016, 70(5): 734–745.

    Article  ADS  Google Scholar 

  3. KRAFT M, KENDA A, FRANK A, et al. Single-detector micro-electro-mechanical scanning grating spectrometer[J]. Analytical and bioanalytical chemistry, 2006, 386(5): 1259–1266.

    Article  Google Scholar 

  4. FARAJI-DANA M, ARBABI E, ARBABI A, et al. Compact folded metasurface spectrometer[J]. Nature communications, 2018, 9(1): 1–8.

    Article  Google Scholar 

  5. MURRAY M J, REDDING B. Distributed multimode fiber Φ-OTDR sensor using a high-speed camera[J]. OSA continuum, 2021, 4(2): 579–588.

    Article  Google Scholar 

  6. SAN FABIÁN N, SOCORRO-LERÁNOZ A B, DEL VILLAR I, et al. Multimode-coreless-multimode fiber-based sensors: theoretical and experimental study[J]. Journal of lightwave technology, 2019, 37(15): 3844–3850.

    Article  ADS  Google Scholar 

  7. BRIENTIN A, LEDUC D, GAILLARD V, et al. Numerical and experimental study of a multimode optical fiber sensor based on Fresnel reflection at the fiber tip for refractive index measurement[J]. Optics & laser technology, 2021, 143: 107315.

    Article  Google Scholar 

  8. SUN Y, LIU D, LU P, et al. High sensitivity optical fiber strain sensor using twisted multimode fiber based on SMS structure[J]. Optics communications, 2017, 405: 416–420.

    Article  ADS  Google Scholar 

  9. FENG F, CHEN W, CHEN D, et al. In-situ ultrasensitive label-free DNA hybridization detection using optical fiber specklegram[J]. Sensors and actuators B: chemical, 2018, 272: 160–165.

    Article  Google Scholar 

  10. CHEN W, FENG F, CHEN D, et al. Precision non-contact displacement sensor based on the near-field characteristics of fiber specklegrams[J]. Sensors and actuators A: physical, 2019, 296: 1–6.

    Article  Google Scholar 

  11. MENG Z, LI J, YIN C, et al. Multimode fiber spectrometer with scalable bandwidth using space-division multiplexing[J]. AIP advances, 2019, 9(1): 015004.

    Article  ADS  Google Scholar 

  12. REDDING B, POPOFF S M, CAO H. All-fiber spectrometer based on speckle pattern reconstruction[J]. Optics express, 2013, 21(5): 6584–6600.

    Article  ADS  Google Scholar 

  13. REDDING B, CAO H. Using a multimode fiber as a high-resolution, low-loss spectrometer[J]. Optics letters, 2012, 37(16): 3384–3386.

    Article  ADS  Google Scholar 

  14. REDDING B, ALAM M, SEIFERT M, et al. High-resolution and broadband all-fiber spectrometers[J]. Optica, 2014, 1(3): 175–180.

    Article  ADS  Google Scholar 

  15. KÜRÜM U, WIECHA P R, FRENCH R, et al. Deep learning enabled real time speckle recognition and hyperspectral imaging using a multimode fiber array[J]. Optics express, 2019, 27(15): 20965–20979.

    Article  ADS  Google Scholar 

  16. RAHMANI B, LOTERIE D, KONSTANTINOU G, et al. Multimode optical fiber transmission with a deep learning network[J]. Light: science & applications, 2018, 7(1): 1–11.

    Article  Google Scholar 

  17. WANG P, DI J. Deep learning-based object classification through multimode fiber via a CNN-architecture SpeckleNet[J]. Applied optics, 2018, 57(28): 8258–8263.

    Article  ADS  Google Scholar 

  18. MATJASEC Z, CAMPELJ S, DONLAGIC D. All-optical, thermo-optical path length modulation based on the vanadium-doped fibers[J]. Optics express, 2013, 21: 11794–11807.

    Article  ADS  Google Scholar 

  19. HANSEN K, ALKESKJOLD T, BROENG J, et al. Thermo-optical effects in high-power ytterbium-doped fiber amplifiers[J]. Optics express, 2011, 19: 23965–23980.

    Article  ADS  Google Scholar 

  20. TEZVERGIL A, LASSILA L V J, VALLITTU P K. The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites[J]. Dental materials, 2003, 19(6): 471–477.

    Article  Google Scholar 

  21. PRADERE C, SAUDER C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300-2500K)[J]. Carbon, 2008, 46(14): 1874–1884.

    Article  Google Scholar 

  22. TAKAO Y, TAYA M. The effect of variable fiber aspect ratio on the stiffness and thermal expansion coefficients of a short fiber composite[J]. Journal of composite materials, 1987, 21(2): 140–156.

    Article  ADS  Google Scholar 

  23. CHOI H-S, TAYLOR H F, LEE C E. High-performance fiber-optic temperature sensor using low-coherence interferometry[J]. Optics letters, 1997, 22(23): 1814–1816.

    Article  ADS  Google Scholar 

  24. HE K, ZHANG X, REN S, et al. In deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 27–30, 2016, Las Vegas, Nevada. New York: IEEE, 2016: 770–778.

    Google Scholar 

  25. LI X, YU L, CHANG D, et al. Dual cross-entropy loss for small-sample fine-grained vehicle classification[J]. IEEE transactions on vehicular technology, 2019, 68(5): 4204–4212.

    Article  Google Scholar 

  26. MAATEN L V D, HINTON G E. Visualizing data using t-SNE[J]. Journal of machine learning research, 2008, 9: 2579–2605.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinpeng Nong  (农金鹏) or Fu Feng  (冯甫).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.91750205, U1701661, 61935013, 61975128, 61905147 and 61805165), the Leading Talents Program of Guangdong Province (No.00201505), the Natural Science Foundation of Guangdong Province (Nos.2016A030312010, 2019TQ05X750 and 2020A1515010598), the Science, Technology and Innovation Commission of Shenzhen Municipality (Nos.JCYJ20180507182035270, KQTD2017033011044403, ZDSYS201703031605029, KQTD20180412181324255 and JCYJ2017818144338999), and the Shenzhen University Starting Fund (No.2019073).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, J., Shen, M., Xiao, X. et al. Deep learning enables temperature-robust spectrometer with high resolution. Optoelectron. Lett. 17, 705–709 (2021). https://doi.org/10.1007/s11801-021-1126-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-1126-y

Document code

Navigation