Skip to main content
Log in

Study on ultra-precision phase synchronization technique employing phase-locked loop

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Microwave-to-optical phase synchronization techniques have attracted growing research interests in recent years. Here, we demonstrate tight, real-time phase synchronization of an optical frequency comb to a rubidium atomic clock. A detailed mathematical model of the phase locking system is developed to optimize its built-in parameters. Based on the model, we fabricate a phase locking circuit with high integration. Once synchronized, the fractional frequency instability of the repetition rate agrees to 6.35×10−12 at 1 s and the standard deviation is 1.5 mHz, which indicates the phase synchronization system can implement high-precision stabilization. This integrated stable laser comb should enable a wide range of applications beyond the laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trocha P, Karpov M, Ganin D, Pfeiffer MHP, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C, Randel S, Freude W, Kippenberg TJ and Koos C, Science 359, 887 (2018).

    Article  ADS  Google Scholar 

  2. Wang Guo-chao, Tan Li-long and Yan Shu-hua, Sensors 18, 500 (2018).

    Article  Google Scholar 

  3. Coddington I, Swann W C, Nenadovic L and Newbury N R, Nature Photonics 3, 351 (2009).

    Article  ADS  Google Scholar 

  4. Oliver Kliebisch, Dirk C. Heinecke, Stefano Barbieri, Giorgio Santarelli, Hua Li, Carlo Sirtori and Thomas Dekorsy, Optica 5, 1431 (2018).

    Article  ADS  Google Scholar 

  5. Chen Xing, Shang Jian-ming, Wang Dong-xing, Ci Cheng, Zhang Wan-peng, Liu Bo, Wu Hong, Yu Song and Zhang Zhi-gang, CLEO: Applications and Technology, Optical Society of America, JW2A.152 (2018).

  6. Kwangyun Jung, Junho Shin, Jinho Kang, Stephan Hunziker, Chang-Ki Min and Jungwon Kim, Optics Letters 39, 1577 (2014).

    Article  ADS  Google Scholar 

  7. CI Cheng, Wu Hong, Tang Ran, Liu Bo, Chen Xing, Zhang Xue-song, Zhang Yu and Zhao Ying-xin, Optoelectronics Letters 14, 109 (2018).

    Article  ADS  Google Scholar 

  8. Ronald Holzwarth, Rafael A. Probst, Tilo Steinmetz, Yuanje Wu, Thomas Udem and Theodor W. Hänsch, CLEO: Science and Innovations, Optical Society of America, STh4H.3 (2016).

  9. E. Obrzud, M. Rainer, A. Harutyunyan, M.H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi and A. Ghedina, 2018 European Conference on Optical Communication (ECOC), IEEE (2018).

  10. Cundiff, Steven T. and Jun Ye, Journal of Modern Optics 52, 201 (2005).

    Article  ADS  Google Scholar 

  11. Micalizio S, Godone A, Calosso C, Levi F, Affolderbach C and Gruet F, IEEE Transactions on Ultrasonics Ferroelectrics & Frequency Control 59, 457 (2012).

    Article  Google Scholar 

  12. Brian R. Washburn, Scott A. Diddams, Nathan R. Newbury, Jeffrey W. Nicholson, Man F. Yan and Carsten G. Jørgensen, Optics Letters 29, 250 (2004).

    Article  ADS  Google Scholar 

  13. Hou Dong, Ning Bo, Li Peng, Zhang Zhi-gang and Zhao Jian-ye, IEEE Journal of Quantum Electronics 47, 891 (2011).

    Article  Google Scholar 

  14. Hou Dong, Wu Jiu-tao, Ren Quan-sheng and Zhao Jian-ye, IEEE Journal of Quantum Electronics 48, 839 (2012).

    Article  Google Scholar 

  15. Kwangyun Jung, Junho Shin and Jungwon Kim, IEEE Photonics Journal 5, 5500906 (2013).

    Article  ADS  Google Scholar 

  16. Hanumolu P. K., Brownlee M., Mayaram K. and Moon, IEEE Transactions on Circuits & Systems I Regular Papers 51, 1665 (2004).

    Article  Google Scholar 

  17. R. E. Best, McGraw-Hill Education, 2007.

  18. X. Shan and D. M. Spirit, Electronics Letters 29, 979 (1993).

    Article  ADS  Google Scholar 

  19. Richard G. Wiley, IEEE Transactions on Instrumentation and Measurement 26, 38 (1977).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Wu  (吴虹).

Additional information

This work has been supported by the National Natural Science Foundation of China (Nos.61571244 and 61871239), and the Tianjin Research Program of Application Foundation and Advanced Technology (No.18YFZCGX00480).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Wp., Wu, H., Zhou, Wf. et al. Study on ultra-precision phase synchronization technique employing phase-locked loop. Optoelectron. Lett. 17, 134–139 (2021). https://doi.org/10.1007/s11801-021-0036-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-021-0036-3

Document code

Navigation