Skip to main content
Log in

Video compressive sensing reconstruction via long-short-term double-pattern prediction

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The compressive sensing technology has a great potential in high-dimensional vision processing. The existing video reconstruction methods utilize the multihypothesis prediction to derive the residual sparse model from key frames. However, these methods cannot fully utilize the temporal correlation among multiple frames. Therefore, this paper proposes the video compressive sensing reconstruction via long-short-term double-pattern prediction, which consists of four main phases: the first phase reconstructs each frame independently; the second phase adaptively updates multiple reference frames; the third phase selects the hypothesis matching patches from current reference frames; the fourth phase obtains the reconstruction results by using the patches to build the residual sparse model. The experimental results demonstrate that as compared with the state-of-the-art methods, the proposed methods can obtain better prediction accuracy and reconstruction quality for video compressive sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Donoho D. L., IEEE Transactions on Information Theory 52, 1289 (2006).

    Article  MathSciNet  Google Scholar 

  2. Zhao Y., Liu Z., Wang Y., Wu H. and Ding S., Entropy 19, 599 (2017).

    Article  ADS  Google Scholar 

  3. Prades N. J., Ma Y. and Huang T., Distributed Video Coding Using Compressive Sampling, IEEE Picture Coding Symposium, 1 (2009).

  4. Lu G., Block Compressed Sensing Of Natural Images, 15th International Conference on Digital Signal Processing, Cardiff, 403 (2007).

  5. Fowler J. E., Mun S. and Tramel E. W., Foundation Trends Signal Processing 4, 297 (2012).

    Article  Google Scholar 

  6. Sankaranarayanan A. C., Studer C. and Baraniuk R. G., CS-MUVI: Video Compressive Sensing for Spatial-Multiplexing Cameras, IEEE International Conference on Computational Photography, 1 (2012).

  7. Park J. Y. and Wakin M. B., A Multiscale Framework for Compressive Sensing of Video, IEEE Picture Coding Symposium, 1 (2009).

  8. Song Y., Yang G., Xie H., Zhang D. and Sun X., Multimedia Tools and Applications 76, 10083 (2017).

    Article  Google Scholar 

  9. Yang J., Yuan X. and Liao X., IEEE Transactions on Image Processing 23, 4863 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  10. Vaswani N., IEEE Transactions on Signal Processing 58, 4108 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  11. Jung H., Sung K., Nayak K. S., Kim E. Y. and Ye J. C., Magnetic resonance in medicine 61, 103 (2009).

    Article  Google Scholar 

  12. Tramel E. W. and Fowler J. E., Video Compressed Sensing with Multihypothesis, IEEE Data Compression Conference, 193 (2011).

  13. Chen C., Tramel E. W. and Fowler J. E., Compressed-Sensing Recovery of Images and Video Using Multihypothesis Predictions, 45th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 1193 (2011).

  14. Kuo Y., Wu K. and Chen J., Multidimensional Systems and Signal Processing 28, 129 (2017).

    Article  Google Scholar 

  15. Chen J., Chen Y. Z., Dong Q. and Kuo Y. H., Multimedia Tools and Application 74, 2085 (2015).

    Article  Google Scholar 

  16. Zhao C., Ma S. W. and Gao W., Image Compressive-Sensing Recovery Using Structured Laplacian Sparsity in DCT Domain and Multi-Hypothesis Prediction, IEEE International Conference on Multimedia & Expo, 1 (2014).

  17. Chen J., Xue F. and Kuo Y. H., Multimedia Tools and Applications 74, 14873 (2018).

    Article  Google Scholar 

  18. Azghani M., Karimi M. and Marvasti F., IEEE Transactions on Circuits and Systems for Video Technology 26, 627 (2016).

    Article  Google Scholar 

  19. Zhao C., Ma S. W. and Zhang J., IEEE Transactions on Circuits and Systems for Video Technology 27, 1182 (2017).

    Article  Google Scholar 

  20. Zheng S., Zhang X. P., Chen J. and Kuo Y. H., A New Compressed Sensing Based Terminal-to-Cloud Video Transmission System, IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, 1 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Liu  (刘浩).

Additional information

This paper has been supported by the Natural Science Foundation of Shanghai (No.18ZR1400300).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, J., Liu, H. Video compressive sensing reconstruction via long-short-term double-pattern prediction. Optoelectron. Lett. 16, 230–236 (2020). https://doi.org/10.1007/s11801-020-9112-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-9112-3

Document code

Navigation