Skip to main content
Log in

Size effect of semiconductor quantum wells in excitonic spin generation under drift

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The excitonic spin polarization in dependence of the size of semiconductor quantum well (QW) was investigated by observing the two different circular polarizations of photoluminescence (PL). From the measurements of PL in QWs, it was found that there is a difference between the two different polarization conditions, which is caused by spin-dependent phase-space filling. The PL spin polarization was estimated from the signals of the left and right circularly polarized PL and was found to depend on the size of the wells as well as on the strength of the bias field. The effects of the size of the well and applied electric field on the excitonic PL spin polarization were studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Dyakonov and A. V. Khaetskii, Spin Hall Effect, Spin Physics in Semiconductors, M. I. Dyakonov, ed., Springer-Verlag, Berlin, 2008.

  2. M. Ziese and M. J. Thornton, Eds., Spin Electronics, Springer-Verlag, Heidelberg, 2001.

    MATH  Google Scholar 

  3. D.D. Awschalom, D. Loss and N. Samarth, Eds, Semiconductor Spintronics and Quantum Computation, Springer, Berlin, 2002.

    Google Scholar 

  4. M. I. Miah, J. Optoelectron. Adv. Mater. 10, 2487 (2008).

    Google Scholar 

  5. H. W. van Kesteren, E. C. Cosman, W. A. J. A. van der Poel and C. T. Foxon, Phys. Rev. B 41, 5283 (1990).

    Article  ADS  Google Scholar 

  6. J. M. Kikkawa and D.D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).

    Article  ADS  Google Scholar 

  7. S. A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L. Roukes, A.Y. Chtchelkanova and D.M. Treger, Science 294, 1488 (2001).

    Article  ADS  Google Scholar 

  8. R. I. Dzhioev, V. L. Korenev, B. P. Zakharchenya, D. Gammon, A. S. Bracker, J. G. Tischler and D. S. Katzer, Phys. Rev. B 66, 153409 (2002).

    Article  ADS  Google Scholar 

  9. X. Lou, C. Adelmann, C. A. Crooker, E. S. Garlid, J. Zhang, K. S. M. Reddy, S. D. Flexner, C. J. Palmstrem and P. A. Crowell, Nat. Phys. 3, 197 (2007).

    Article  Google Scholar 

  10. R. J. Seymour and R. R. Alfano, Appl. Phys. Lett. 37, 231 (1980).

    Article  ADS  Google Scholar 

  11. J. Wagner, H. Schneider, D. Richards, A. Fischer and K. Ploog, Phys. Rev. B 47, 4786 (1993).

    Article  ADS  Google Scholar 

  12. T. Endo, K. Sueoka and K. Mukasa, Jpn. J Appl. Phys. 39, 397 (2000).

    Article  ADS  Google Scholar 

  13. H. Gotoh, H. Ando, H. Kamada, A. Chavez-Pirson and J. Temmyo, Appl. Phys. Lett. 72, 1341 (1998).

    Article  ADS  Google Scholar 

  14. S. Cortez, O. Krebs, S. Laurent, M. Senes, X. Marie, P. Voisin, R. Ferreira, G. Bastard, J.- M. Gérard and T. Amand, Phys. Rev. Lett. 89, 207401 (2002).

    Article  ADS  Google Scholar 

  15. S. P. Dash, S. Sharma, R. S. Patel, M. P. de Jong and R. Jansen, Nature 462, 491 (2009).

    Article  ADS  Google Scholar 

  16. F. Feng, L. T. Nguyen, M. Nasilowski, B. Nadal, B. Dubertrel, L. Coolen and A. Maitre, Nano Research 11, 3593 (2018).

    Article  Google Scholar 

  17. F. Feng, L. T. Nguyen, M. Nasilowski, B. Nadal, B. Dubertrel, A. Maitre and L. Coolen, ACS Photonics 5, 1994 (2018).

    Article  Google Scholar 

  18. G. E. Pikus and A. N. Titkov, in Optical Orientation, Modern Problems in Condensed Matter Science (F. Meier and B. P. Zakharchenya, Eds.), North-Holland, Amsterdam, 1984.

  19. M. I. Miah, Appl. Phys. Lett. 94, 182106 (2009).

    Article  ADS  Google Scholar 

  20. G. Lampel and C. Weisbuch, Solid State Comm. 16, 877 (1975).

    Article  ADS  Google Scholar 

  21. I. A. Avrutsky and A. V. Vosmishev, Phys. Low-Dim. Struct. 10/11, 257 (1995).

    Google Scholar 

  22. T. Wang, A. Li and Z. Tan, Proc. SPIE 6838, 683814 (2007).

    Article  Google Scholar 

  23. M. I. Miah, Appl. Phys. Lett. 94, 182106 (2009).

    Article  ADS  Google Scholar 

  24. M. I. Miah and J. Kasperczyk, Appl. Phys. Lett. 94, 053117 (2009).

    Article  ADS  Google Scholar 

  25. A. P. Heberle, W. W. Ruhle and K. Ploog, Phys. Lett. 72, 3887 (1994).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Idrish Miah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miah, M.I. Size effect of semiconductor quantum wells in excitonic spin generation under drift. Optoelectron. Lett. 16, 318–320 (2020). https://doi.org/10.1007/s11801-020-9108-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-020-9108-z

Document code

Navigation