Skip to main content

Advertisement

Log in

Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

ZnO nanorod arrays (NRAs) were prepared via a facile hydrothermal method for photoelectrochemical (PEC) applications. Then, ZnS thin shell layers were deposited onto them via a facile hydrothermal treatment process for constructing a ZnO/ZnS core/shell structure. It was demonstrated that the PEC activity of a ZnO NRA is enhanced significantly after the surface modification, although there weren’t any obvious changes in the visible-light harvesting efficiency. Both the Nyquist and Mott-Schottky (M-S) plots were employed to reveal the reason, which was attributed to higher electrocatalytic activity of ZnS than that of ZnO and the resulting higher charge transfer efficiency across the solid/liquid interfaces. Finally, a schematic band model was proposed for clarifying the charge carrier transfer mechanism occurred at the interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Law, L.E. Greene, J.C. Johnson, R. Saykally and P. Yang, Nat. Mater. 4, 455 (2005).

    Article  ADS  Google Scholar 

  2. L. Greene, M. Law, D.H. Tan, J. Goldberger and P. Yang, Nano Lett. 5, 1231 (2005).

    Article  ADS  Google Scholar 

  3. L. Wang, X. Gu, Y. Zhao and Y. Qiang, J. Mater. Sci. Mater. Electron. 29, 4058 (2017).

    Article  Google Scholar 

  4. Y. H. Leung, Z. B. He, L. B. Luo, C. H. A. Tsang, N. B. Wong, W. J. Zhang and S. T. Lee, Appl. Phys. Lett. 96, 053102 (2010).

    Article  ADS  Google Scholar 

  5. C. Xu, J. Wu, U. V. Desai and D. Gao, Nano Lett. 12, 2420 (2012).

    Article  ADS  Google Scholar 

  6. C. Xu, J. Wu, U. V. Desai and D. Gao, J. Am. Chem. Soc. 133, 8122 (2011).

    Article  Google Scholar 

  7. A. Fujishima and K. Honda, Nature 238, 37 (1972).

    Article  ADS  Google Scholar 

  8. M. D. Bhatt and J. S. Lee, J. Mater. Chem. A 3, 10632 (2015).

    Article  Google Scholar 

  9. S. Zhang, X. Gu, Y. Zhao and Y. Qiang, J. Electron. Mater. 45, 648 (2016).

    Article  ADS  Google Scholar 

  10. M. Zhong, Y. Li, I. Yamada and J.-J. Delaunay, Nanoscale 4, 1509 (2012).

    Article  ADS  Google Scholar 

  11. Y. Kuang, Q. Jia, H. Nishiyama, T. Yamada, A. Kudo and K. Domen, Adv. Energy Mater. 6, 1501645 (2016).

    Article  Google Scholar 

  12. X. Yang, R. Liu, C. Du, P. Dai, Z. Zheng, and D. Wang, ACS Appl. Mater. Interfaces 6, 12005 (2014).

    Article  Google Scholar 

  13. J. Su, L. Guo, N. Bao, and C.A. Grimes, Nano Lett. 11, 1928 (2011).

    Article  ADS  Google Scholar 

  14. L. Wang, M. Wei, X. Gu, Y. Zhao, Y. Qiang, J. Electron. Mater. 47, 6540 (2018).

    Article  ADS  Google Scholar 

  15. X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang and Y. Li, Nano Lett. 9, 2331 (2009).

    Article  ADS  Google Scholar 

  16. Z. Bai, X. Yan, Y. Li, Z. Kang, S. Cao and Y. Zhang, Adv. Energy Mater. 6, 1501459 (2015).

    Article  Google Scholar 

  17. Z. Bai, X. Yan, Z. Kang, Y. Hu, X. Zhang and Y. Zhang, Nano Energy 14, 392 (2015).

    Article  Google Scholar 

  18. L. Wang, X. Gu, Y. Zhao, Y. Qiang, C. Huang and J. Song, Vacuum 148, 201 (2018).

    Article  ADS  Google Scholar 

  19. W. Chen, H. Ruan, Y. Hu, D. Li, Z. Chen, J. Xian, J. Chen, X. Fu, Y. Shao and Y. Zheng, Cryst. Eng. Comm. 14, 6295 (2012).

    Article  Google Scholar 

  20. P. Chelvanathana, Y. Yusoffa, F. Haquea, M. Akhtaruzzamana, M. M. Alamc, Z. A. Alothmanc, M. J. Rashid, K. B. Sopian and N. Amin, Appl. Surf. Sci. 334, 138 (2015).

    Article  ADS  Google Scholar 

  21. H. P. Maruska and A. K. Ghosh, Sol. Energy 20, 443 (1978).

    Article  ADS  Google Scholar 

  22. E. Burstein, Phys. Rev. Lett. 93, 632 (1954).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei-rong Sui  (隋美蓉).

Additional information

This work has been supported by the Science and Technology Projects of Xuzhou City (No.KC14SM088), and the Natural Science Fund for Colleges and Universities in Jiangsu Province (No.15KJB430031).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sui, Mr., Gu, Xq., Shi, Ml. et al. Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array. Optoelectron. Lett. 15, 241–244 (2019). https://doi.org/10.1007/s11801-019-8162-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-019-8162-x

Document code

Document code

Navigation