Skip to main content
Log in

Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

A novel hybrid air-core photonic band-gap fiber (PBF) ring resonator with twin 90° polarization-axis rotated splices is proposed and demonstrated. Frist, we measure the temperature dependent birefringence coefficient of air-core PBF and Panda fiber. Experimental results show that the relative temperature dependent birefringence coefficient of air-core PBF is 1.42×10-8/°C, which is typically ~16 times less than that of Panda fiber. Then, we extract the geometry profile of air-core PBF from scanning electron microscope (SEM) images. Numerical modal is built to distinguish the fast axis and slow axis in the fiber. By precisely setting the length difference in air-core PBF and Panda fiber between two 90° polarization-axis rotated splicing points, the hybrid air-core PBF ring resonator is constructed, and the finesse of the resonator is 8.4. Environmental birefringence variation induced by temperature change can be well compensated, and experimental results show an 18-fold reduction in thermal sensitivity, compared with resonator with twin 0° polarization-axis rotated splices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lamouroux B., Prade B. and Orszag A., Optics Letters 7, 391 (1982).

    Article  ADS  Google Scholar 

  2. Iwatsuki K., Hotate K. and Higashiguchi M., Journal of Lightwave Technology 4, 645 (1986).

    Article  ADS  Google Scholar 

  3. Mangan B., Farr L., Langford A., Roberts P. J., Williams D. P., Lawman M., Mason M., Coupland S., Flea R., Sabert H., Tim A. Birks T. A., Knight J. C. and Philip R. S. J., Low Loss (1.7 dB/km) Hollow Core Photonic Bandgap Fiber, Optical Fiber Communication Conference, PD24 (2004).

    Google Scholar 

  4. Dangui V., Digonnet M. J. and Kino G. S., Optics Letters 34, 875 (2009).

    Article  ADS  Google Scholar 

  5. Zhao X., Louveau J., Chamoun J. and Digonnet M. J., Journal of Lightwave Technology 32, 2577 (2014).

    Article  Google Scholar 

  6. Sanders G. A., Strandjord L. K. and Qiu T., Hollow core Fiber Optic Ring Resonator for Rotation Sensing, Optical Fiber Sensors, ME6 (2006).

    Google Scholar 

  7. Feng L., Ren X., Deng X. and Liu H., Optics Express 20, 18202 (2012).

    Article  ADS  Google Scholar 

  8. Fsaifes I., Feugnet G., Baz A., Ravaille A., Debord B., Gérôme F., Humbert G., Schwartz S., Benabid F. and Bretenaker F., Hollow-core Photonic-Bandgap Fiber Resonator for Rotation Sensing, Conference on Lasers and Electro-Optics, 1 (2016).

    Google Scholar 

  9. Fsaifes I., Feugnet G., Ravaille A., Debord B., Gérôme F., Baz A., Humbert G., Schwartz S. and Bretenaker F., Optics Communications 383, 485 (2017).

    Article  ADS  Google Scholar 

  10. Terrel M. A., Digonnet M. J. and Fan S., Journal of Lightwave Technology 30, 931 (2012).

    Article  ADS  Google Scholar 

  11. Yan Y., Ma H., Wang L., Li H. and Jin Z., Optics Express 23, 31384 (2015).

    Article  ADS  Google Scholar 

  12. Ma H. Chen Z., Yang Z., Yu X. and Jin Z., Applied Optics 51, 6708 (2012).

    Article  ADS  Google Scholar 

  13. Roberts P. J., Williams D. P., Sabert H., Mangan B. J., Bird D. M., Birks T. A., Knight J. C. and Russell P. S. J., Optics Express 14, 7329 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang  (王锴).

Additional information

This work has been supported by the National Natural Science Foundation of China (No.61473022).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, Ls., Wang, K., Jiao, Hc. et al. Reduced thermal sensitivity of hybrid air-core photonic band-gap fiber ring resonator. Optoelectron. Lett. 14, 17–20 (2018). https://doi.org/10.1007/s11801-018-7217-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-018-7217-8

Navigation