Skip to main content
Log in

Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

The Yb3+-doped silica glass was prepared by the SiCl4 hydrolysis doping and powder melting technology based on high frequency plasma. The absorption and emission characteristics of the Yb3+-doped silica glass are studied at room temperature. The integrated absorption cross section, stimulated emission cross section and fluorescence lifetime are calculated to be 8.56×104 pm3, 1.39 pm2 and 0.56 ms, respectively. The Yb3+-doped microstructure fiber (MSF) was also fabricated by using the Yb3+-doped silica glass as fiber core. What’s more, the laser properties of the Yb3+-doped MSF are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Richardson D J, Nilsson J and Clarkson W A, Journal of the Optical Society of America B 27, B63 (2010).

    Google Scholar 

  2. Shi Wei, Fang Qiang, Xu Yang, Qin Yuguo, Fan Jingli, Meng Xiangjie and Zhang Qihang, Journal of Optoelectronics ·Laser 26, 662 (2015). (in Chinese)

    Google Scholar 

  3. S Hädrich, J Rothhardt, T Eidam, T Gottschall, J Limpert and A Tunnermann, Proc. SPIE 7914, 79140S (2011).

    Google Scholar 

  4. Wang Feng, Bi Weihong, Jiang Peng, Wu Yang and Fu Xinghu, Journal of Optoelectronics·Laser 26, 1435 (2015). (in Chinese)

    Google Scholar 

  5. Zhang Weihua, Liu Mengying, Tong Zhengrong and Cao Ye, Journal of Optoelectronics·Laser 27, 12 (2016). (in Chinese)

    Google Scholar 

  6. J Le Person, V Nazabal, R Balda, J L Adam and J Fernandez, Optical Materials 27, 1748 (2005).

    Article  ADS  Google Scholar 

  7. Guyut Y, Steimacher A, Belancon M P, Medina A N, Baesso M L, Lima M S, Andrade L H C, Brenier A, Jurdyc A and Boulon G, Journal of the Optical Society of America B 28, 2510 (2011).

    Article  Google Scholar 

  8. Messias D N and Catunda T, Optics Letters 32, 665 (2007).

    Article  ADS  Google Scholar 

  9. J E Townsend, S B Poole and D N Payne, Electronics Letter 23, 329 (1987).

    Article  Google Scholar 

  10. J Stone and C A Burrus, Applied Physics Letter 23, 388 (1973).

    Article  ADS  Google Scholar 

  11. V Petit, E H Sekiya, T Okazaki, R Bacus, P Barua, B Yao, K Ohsono and K Saito, Proc. SPIE 6998, 69980A (2008).

    Google Scholar 

  12. A Langner, G Schötz, M Such, T Kayser, V Reichel, S Grimm, J Kirchhof, V Krause and G Rehmann, Proc. SPIE 6873, 687311 (2008).

    Article  Google Scholar 

  13. Joona J Koponen, Laeticia Petit, Teemu Kokki, Ville Aallos, Jijo Paul and Heikki Ihalainen, Optical Engineering 50, 111605 (2011).

    Article  ADS  Google Scholar 

  14. Martin Leich, Florian Just, Andreas Langner, Mario Such, Gerhard Schötz, Tina Eschrich and Stephan Grimm, Optics Letters 36, 1557 (2011).

    Article  ADS  Google Scholar 

  15. Joan J Montieli Ponsoda, Lars Norin, C G Ye, Markus Bosund, Mikko J Söderlund, Ari Tervonen and Seppo Honkanen, Optics Express 20, 25085 (2012).

    Article  ADS  Google Scholar 

  16. Wang Chao, Zhou Guiyao, Han Ying, Wang Wei and Hou Lantian, Journal of Lightwave Technology 31, 2864 (2013).

    Article  ADS  Google Scholar 

  17. Wang Chao, Zhou Guiyao, Xia Changming, Han Ying, Zhao Xing Tao, Zhang Wei and Wang Wei, Optical Fiber Technology 20, 106 (2014).

    Article  ADS  Google Scholar 

  18. Takebe H, Murata T and Morinaga K, Journal of the American Ceramic Society 79, 681 (1996).

    Article  Google Scholar 

  19. Zhen Luo and M Martonosi, Journal of Non-Crystalline Solids 292, 108 (2001).

    Article  Google Scholar 

  20. B F Aull and H P Jenssen, IEEE Journal of Selected Topics in Quantum Electronics 18, 925 (1982).

    Article  Google Scholar 

  21. L Dellach, S Payne, L Chase, K Larry, L Wayne and F William, IEEE Journal of Quantum Electronics 29, 1179 (1993).

    Article  ADS  Google Scholar 

  22. Zou Xuelu and H. Toratani, Physical Review B 52, 15889 (1995).

    Article  ADS  Google Scholar 

  23. L I Toratani, V I Molev, A E Pozdnyakov and V F Surkova, Journal of Optical Technology 71, 828 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang  (王超).

Additional information

This work has been supported by the National Basic Research Program of China (No.2010CB327604), the National Natural Science Foundation of China (Nos.61205084, 61405173 and 61405172), the Natural Science Foundation of Hebei Province (Nos.F2014203194, F2012203114 and F2014203224), and the Science and Technology Program of Tangshan (No.15130263a).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C. Preparation and laser properties of Yb3+-doped microstructure fiber based on hydrolysis-melting technique. Optoelectron. Lett. 13, 50–53 (2017). https://doi.org/10.1007/s11801-017-6257-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-017-6257-9

Navigation