Skip to main content
Log in

Design and characteristics of a non-contact rotational sensor based on a fiber Bragg grating

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

We propose a novel non-contact rotational sensor based on a fiber Bragg grating (FBG) packaged in a core of a magnetic head, which converts the introduced strain from the circular magnetic railings ruler into the rotational information. A mathematical model is built for processing the data obtained by an interrogator, and the accuracy and resolution of the measurements are analyzed by altering the radius and period of the circular magnetic railings ruler, as well as the dimension of the sensor. The experimental results show that it is in good accordance with the theoretical analysis on rotational angle, and the fitting results indicate that the results obtained from the rotational sensor match very well with the real rotational velocity with a linearity of 0.998 and a standard error of about 0.01.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. B. Gan, C. Zhang, D. Y. Tang and F. Li., Semiconductor Optoelectronics 33, 795 (2012).

    Google Scholar 

  2. J. Hao, J. H. Ng and S. Takahasi, Fiber Bragg Grating Sensor: US, US7702190, 2010.

    Google Scholar 

  3. Q. P. Liu, J. Y. Hui, X. G. Qiao, Z. A. Jia, H. W. Fu, D. K. Yu and H. Ga., Journal of Optoelectronics·Laser 27, 468 (2016). (in Chinese)

    Google Scholar 

  4. B. Liu, Y. T. Dai, X. Zhou Xian, M. Zou and Joseph Muna Karanj., Journal of Optoelectronics·Laser 26, 1860 (2015). (in Chinese)

    Google Scholar 

  5. Z. G. Jia, L. Ren, H. N. Li, M. F. Ren and Q. Z. Huan., Chinese Journal of Lasers 37, 1298 (2010). (in Chinese)

    Article  Google Scholar 

  6. L. T. Li, D. S. Zhang, X. Y. Wen and S. S. Pen., Chinese Optics Letters 13, 100601 (2015).

    Article  ADS  Google Scholar 

  7. Y. Cao, Y. F. Yang, X. F. Yang and Z. R. Ton., Chinese Optics Letters 10, 030605 (2012).

    Article  ADS  Google Scholar 

  8. Y. P. Zhang, Y. L. Xu and Y. T. Wan., Chinese Journal of Scientific Instrument 35, 147 (2014). (in Chinese)

    Google Scholar 

  9. X. Y. Li, W. W. Ling, Y. H. Wei and Z. L. X., Chinese Optics Letters 13, 090603 (2015).

    Article  Google Scholar 

  10. S. C. Tao, X. P. Dong and B. W. La., Optics Communications 372, 44 (2016).

    Article  ADS  Google Scholar 

  11. J. Wang, B. Liu, F. T. Zhang and D. S. Jian., Nanotechnology and Precision Engineering 6, 468 (2008).

    Google Scholar 

  12. H. Yu, X. Yang, Z. Tong, Y. Cao and A. Zhang, IEEE Sensors Journal 11, 1233 (2011).

    Article  Google Scholar 

  13. R. Montanini and S. Pirrott., Sensors and Actuators A: Physical 132, 533 (2006).

    Article  Google Scholar 

  14. C. H. Cheng, S. C. Hung and W. F. Li., Microwave and Optical Technology Letters 56, 1449 (2014).

    Article  Google Scholar 

  15. H. J. Sheng, P. T. Tsai, W. Y. Lee, G. R. Lin, H. T. Sun, D. W. Huang and W. F. Liu, IEEE Sensors Journal 12, 1436 (2012).

    Article  Google Scholar 

  16. H. J. Sheng, G. R. Lin, P. T. Tsai, C. A. Yang, M. H. Kuo, H. T. Sun, M Y. Fu and W. F. Liu, Random-Rotational Angle Sensor Based on Fiber Bragg Gratings, 17th Opto-Electronics and Communications Conference, 192 (2012).

    Google Scholar 

  17. J. H. He, P. T. Tsai, H. J. Sheng, M. S. Lin, H. T. Sun, W. F. Liu, G. R. Lin and M. F. Tsai, A Rotational Angle Sensor Based on Fiber Bragg Gratings, 6th International Conference on Advanced Infocomm Technology, 111 (2014).

    Google Scholar 

  18. C. J. Moreno-Hernández, D. Monzón-Hernández, A. Martínez-Ríos, D. Moreno-Hernández and J. Villatoro, IEEE Photonics Technology Letters 27, 379 (2015).

    Article  ADS  Google Scholar 

  19. D. S. Xu, J. H. Yin, Z. Z. Cao, Y. L. Wang, H. H. Zhu and H. F. Pe., Measurement 46, 200 (2013).

    Article  Google Scholar 

  20. X. F. Yang, H. Yu, P. Wang, Z. R. Tong, J. T. Zhao and Q. L., Journal of Optoelectronics·Laser 21, 1156 (2010). (in Chinese)

    Google Scholar 

  21. L. Z. Cui, Y. Jiang and Y. H. Li., Acta Photonica Sinica 40, 1667 (2011). (in Chinese)

    Article  Google Scholar 

  22. Z. H. Gao, X. H. Chen and D. L. Pen., Optics and Precision Engineering 23, 93 (2015).

    Article  Google Scholar 

  23. Jin L., Magnetic Grid Displacement Sensor, Mechanical Engineering and Automation 1, 200 (2014). (in Chinese)

    Google Scholar 

  24. B. Liu, W. C. Ni. Cheng, Y. F. Yang, J. H. Luo, Y. Cao, G. Y. Kai, W. G. Zhang and X. Y. Dong, Chinese Journal of Scientific Instrument 27, 42 (2006). (in Chinese)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lian-qing Zhu  (祝连庆).

Additional information

This work has been supported by the Program for Cheung Kong Scholars and Innovative Research Team in University (No.IRT1212), the Project Plan of Beijing Municipal Science and Technology Commission (No.Z151100003615010), and the Project Plan of Beijing Municipal Education Commission for Enhancing the Innovation Capability in 2015 (No.TJSHG201510772016).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Ld., Li, H., Yao, Qf. et al. Design and characteristics of a non-contact rotational sensor based on a fiber Bragg grating. Optoelectron. Lett. 12, 421–425 (2016). https://doi.org/10.1007/s11801-016-6172-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-016-6172-5

Navigation