Skip to main content
Log in

Performance analysis of quantum key distribution based on air-water channel

  • Published:
Optoelectronics Letters Aims and scope Submit manuscript

Abstract

Considering the air-water interface and ocean water’s optical attenuation, the performance of quantum key distribution (QKD) based on air-water channel is studied. The effects of photons’ various incident angles to air-water interface on quantum bit error rate (QBER) and the maximum secure transmission distance are analyzed. Taking the optical attenuation of ocean water into account, the performance bounds of QKD in different types of ocean water are discussed. The simulation results show that the maximum secure transmission distance of QKD gradually reduces as the incident angle from air to ocean water increases. In the clearest ocean water with the lowest attenuation, the maximum secure transmission distance of photons far exceeds the the working depth of underwater vehicles. In intermediate and murky ocean waters with higher attenuation, the secure transmission distance shortens, but the underwater vehicle can deploy other accessorial methods for QKD with perfect security. So the implementation of OKD between the satellite and the underwater vehicle is feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Bennett and G. Brassard, Quantum Cryptography: Public Key Distribution and Coin Tossing, IEEE International Conference on Computers, Syetems and Signal Processing 175, (1984).

  2. CNII, http://www.cnii.com.cn/broadband/2014-05/13/content1360888.htm.

  3. H. K. Lo, C. Marcos and Q. Bing, Physical Review Letters 108, 130503 (2012).

    Article  ADS  Google Scholar 

  4. F. H. Xu, B. Qi, Z. L. Liao and H. K. Lo, Applied Physics Letters 103, 061101 (2013).

    Article  ADS  Google Scholar 

  5. Y. Y. Zhou, H. Q. Zhang, X. J. Zhou and P. G. Tian, Acta Physica Sinica 62, 200302 (2013). (in Chinese)

    Google Scholar 

  6. H. Q. Zhang, Y. Y. Zhou, X. J. Zhou and P. G. Tian, Optoelectronics Letters 9, 389 (2013).

    Article  ADS  Google Scholar 

  7. Y. Y. Zhou, X. J. Zhou, P. G. Tian and Y. J. Wang, Chinese Physics B 22, 010305 (2013).

    Article  ADS  Google Scholar 

  8. Y. Y. Zhou and X. J. Zhou, Acta Physica Sinica 60, 100301 (2011). (in Chinese)

    Google Scholar 

  9. Y. Y. Zhou, X. J. Zhou and J Gao, Optoelectronics Letters 6, 396 (2010).

    Article  ADS  Google Scholar 

  10. Y. Y. Zhou and X. J. Zhou, Optoelectronics Letters 7, 389 (2011).

    Article  ADS  Google Scholar 

  11. H. P. Hu, J. D. Wang, Y. X. Huang, S. H. Liu and W. Lu, Acta Physica Sinica 59, 287 (2010). (in Chinese)

    Google Scholar 

  12. V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus and M. Peev, Reviews of Modern Physics 81, 1301 (2009).

    Article  ADS  Google Scholar 

  13. S. L. Zhang, X. B. Zou, C. F. Li, C. H. Jin and G. C. Guo, Chinese Science Bulletin 54, 1863 (2009).

    Article  MATH  Google Scholar 

  14. J. Yang, B. J. Xu, X. Peng and H. Guo, Physics Letters A 85, 052302 (2012).

    Google Scholar 

  15. T. Schmitt-Manderbach, H. Weier, M. Fürs, R. Ursin, F. Tiefenbacher, T. Scheidl, J. Perdigues, Z. Sodnik, C. Kurtsiefer, J. G. Rarity, A. Zeilinger and H. Weinfurter, Physical Review Letters 98, 010504 (2007).

    Article  ADS  Google Scholar 

  16. W. T. Buttler, R. J. Hughes, P. G. Kwiat, S. K. Lamoreaux, G. G. Luther, G. L. Morgan, J. E. Nordholt, C. G. Peterson and C. M. Simmons, Physical Review Letters 81, 03283 (1998).

    Article  ADS  Google Scholar 

  17. M. Aspelmeyer, H. R. BÖhm, T. Gyatso, T. Jennewein, R. Kaltenbaek, M. Lindenthal, G. Molina-Terriza, A. Poppe, K. Resch, M. Taraba, R. Ursin, P. Walther and A. Zeilinger, Science 301, 5633 (2003).

    Article  Google Scholar 

  18. M. Lanzagorta, Underwater Communications, New York: Morgan & Claypool Publishers, 44 (2012).

    Google Scholar 

  19. F. Zhou, H. L. Yong, D. D. Li, J. Yin, J. G. Ren and C. Z. Peng, Acta Physica Sinica 63, 140303 (2014). (in Chinese)

    Google Scholar 

  20. K. H. Zhao, X. H. Zhong, Optics, Beijing: Peking University Press, 248 (1984). (in Chinese)

    Google Scholar 

  21. N. G. Jerlov, Marine Optics, Second Edition, Holand: Elsevier Science, 7 (1976).

    Google Scholar 

  22. H. K. Lo, X. F. Ma and K. Chen, Physical Review Letters 94, 230504 (2005).

    Article  ADS  Google Scholar 

  23. X. F. Ma, B. Qi, Y. Zhao and H. K. Lo, Physics Letters A 72, 012326 (2005).

    Google Scholar 

  24. Q. Wang, X. B. Wang and G. C. Guo, Physics Letters A 75, 012312 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-yuan Zhou  (周媛媛).

Additional information

This work has been supported by the National High Technology Research and Development Program of China (No.2011AA7014061).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Yy., Zhou, Xj. Performance analysis of quantum key distribution based on air-water channel. Optoelectron. Lett. 11, 149–152 (2015). https://doi.org/10.1007/s11801-015-5004-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11801-015-5004-3

Keywords

Navigation