Skip to main content
Log in

Dugundji’s Theorem Revisited

  • Published:
Logica Universalis Aims and scope Submit manuscript

Abstract

In 1940 Dugundji proved that no system between S1 and S5 can be characterized by finite matrices. Dugundji’s result forced the development of alternative semantics, in particular Kripke’s relational semantics. The success of this semantics allowed the creation of a huge family of modal systems. With few adaptations, this semantics can characterize almost the totality of the modal systems developed in the last five decades. This semantics however has some limits. Two results of incompleteness (for the systems KH and VB) showed that not every modal logic can be characterized by Kripke frames. Besides, the creation of non-classical modal logics puts the problem of characterization of finite matrices very far away from the original scope of Dugundji’s result. In this sense, we will show how to update Dugundji’s result in order to make precise the scope and the limits of many-valued matrices as semantic of modal systems. A brief comparison with the useful Chagrov and Zakharyaschev’s criterion of tabularity for modal logics is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballarin, R.: Modern origins of modal logic. In: The Stanford Encyclopedia of Philosophy, Winter 2010 edition. http://plato.stanford.edu/archives/win2010/entries/logic-modal-origins/ (2010)

  2. Béziau J.Y.: A new four-valued approach to modal logic. Log. Anal. 54(213), 109–121 (2011)

    MATH  Google Scholar 

  3. Bueno-Soler, J.: Multimodalidades anódicas e catódicas: a negação controlada em lógicas multimodais e seu poder expressivo (Anhodic and cathodic multimodalities: controlled negation in multimodal logics and their expressive power, in Portuguese). PhD thesis, Instituto de Filosofia e Ciências Humanas (IFCH), Universidade Estadual de Campinas (Unicamp), Campinas (2009)

  4. Carnielli, W.A., Pizzi, C.: Modalities and multimodalities. In: Logic, Epistemology, and the Unity of Science, vol. 12. Springer-Verlag, New York (2008)

  5. Chagrov, A.V., Zakharyaschev, M.: Modal logic. In: Oxford Logic Guides, vol. 35. Oxford University Press, Oxford (1997)

  6. Creswell M.J, Hughes G.E.: A New Introduction to Modal Logic. Routledge, London (1996)

    Google Scholar 

  7. Dugundji J.: Note on a property of matrices for Lewis and Langford’s calculi of propositions. J. Symb. Log. 5(4), 150–151 (1940)

    Article  MathSciNet  Google Scholar 

  8. Esakia L, Meskhi V: Five critical modal systems. Theoria 43(1), 52–60 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gödel, K.: Eine intepretation des intionistischen Aussagenkalkül. Ergebnisse eines mathematischen Kolloquiums 4, 6–7 (1933) (English translation in [13], pp. 300–303)

  10. Gödel, K.: Zur intuitionistischen arithmetik und zahlentheorie. Ergebnisse eines mathematischen Kolloquiums 4, 34–38 (1933) (English translation in [13], pp. 222–225)

  11. Gödel, K.: Kurt Godel, Collected Works: Publications 1929–1936. Oxford University Press, Cary (1986)

  12. Henkin L.: Fragments of the proposicional calculus. J. Symb. Log. 14(1), 42–48 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lewis, C.I., Langford, C.H.: Symbolic Logic. Century, New York (1932)

  14. Lemmon E.J: New foundations for Lewis modal systems. J. Symb. Log. 22(2), 176–186 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lemmon E.J.: Algebraic semantics for modal logics I. J. Symb. Log. 31(1), 44–65 (1966)

    Google Scholar 

  16. Łukasiewicz,J.: O logice trójwartościowej. Ruch Filozoficzny 5, 170–171 (1920) (English translation in [19] pp. 87–88)

  17. Łukasiewicz, J.: Selected Works. Studies in Logic. North-Holland Publishing Company, London (1970)

  18. McKinsey, J.C.C.: A reduction in number of the postulates for C. I. Lewis’ system of strict implication. Bull. (New Ser.) Am. Math. Soc. 40, 425–427 (1934)

  19. Magari R.: Representation and duality theory for diagonalizable algebras. Stud. Log. 34(4), 305–313 (1975)

    Article  MathSciNet  Google Scholar 

  20. Scroggs S.J.: Extensions of the Lewis system S5. J. Symb. Log. 16(2), 112–120 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sobociński, B.: Family K of the non-Lewis modal systens. Notre Dame J. Formal Log. V(4), 313–318 (1964)

  22. Zeman, J.J.: Modal Logic: The Lewis Systems. Clarendon Press, UK (1973)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo E. Coniglio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coniglio, M.E., Peron, N.M. Dugundji’s Theorem Revisited. Log. Univers. 8, 407–422 (2014). https://doi.org/10.1007/s11787-014-0106-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11787-014-0106-4

Mathematics Subject Classification (2010)

Keywords

Navigation