Skip to main content
Log in

First Order Perturbation and Local Stability of Parametrized Systems

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

A problem frequently encountered in geometric constraint solving and related settings is to ascertain sensitivity of solutions arising from a well constrained input configuration. This is important for tolerancing and motion planning, for example. An example would be determining lines simultaneously tangent to four given spheres (which originates as a line-of-sight problem); how much does a perturbation of the input affect the positioning of these lines. Once translated to an algebraic setting one has a system of polynomial equations with some coefficients parametrized, and wants to determine the solutions and a good approximation of their sensitivity to changes in the parameters. We will compute this sensitivity from first order changes in an appropriate Gröbner basis. We demonstrate the applicability on several examples. We also discuss a more global form of stability, wherein one wants to know about perturbations that might change the character of the solution space e.g. by having fewer than the generic number of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker T., Kredel H., Weispfenning V.: Gröbner bases: a computational approach to commutative algebra. Springer-Verlag, London (1993)

    Book  MATH  Google Scholar 

  2. Bottema O., Veldkamp G.: On the lines in space with equal distances to n given points. Geometriae Dedicata 6, 121–129 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chaperon, T., Goulette, F.: A note on the construction of right circular cylinders through five 3d points. Technical report, Centre de Robotique, Ecole des Mines de Paris (2003)

  4. Chen, C. Golubitsky, O., Lemaire, F., Maza, M.M., Pan, W.: Comprehensive triangular decomposition. In: Proceedings of CASC 2007, Lecture Notes in Computer Science, vol. 4770, pp. 73–101. Springer-Verlag, London (2007)

  5. Chen Z., Tang X., Xia B.: Generic regular decompositions for parametric polynomial systems. J. Syst. Sci. Complex. 28, 1194–1211 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corless R.: Editor’s corner: Gröbner bases and matrix eigenproblems. ACM Sigsam Bull. Commun. Comput. Algebra 30, 26–32 (1996)

    Article  Google Scholar 

  7. Cox, D.A., Little, J., O’Shea, D.: Using algebraic geometry, Graduate Texts in Mathematics. Springer-Verlag New York, Inc. (1998)

  8. Devillers O., Mourrain B., Preparata F., Trebuchet P.: On circular cylinders by four or five points in space. Discrete Comput. Geom. 28, 83–104 (2003)

    MathSciNet  MATH  Google Scholar 

  9. Fukuda K., Jensen A.N., Lauritzen N., Thomas R.: The generic gröbner walk. J. Symb. Comput. 42, 298–312 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gräbe H.-G.: Algorithms in local algebra. J. Symb. Comput. 19, 545–557 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hoffmann, C.M., Yuan, B.: On spatial constraint solving approaches. In: Revised papers from the third international workshop on automated deduction in geometry (ADG 2000), Lecture Notes in Computer Science, vol. 2061, pp. 1–15. Springer-Verlag, London (2001)

  12. Kondratyev, A.: Numerical computation of Gröbner bases. PhD thesis, Johannes Kepler Universität Linz (2003)

  13. Kondratyev, A., Stetter, H., Winkler, F.: Numerical computation of Gröbner bases. In: Proceedings of the 7th workshop on computer algebra in scientific computation (CASC 2004), pp. 295–306 (2004)

  14. Lazard, D.: Gröbner bases, gaussian elimination, and resolution of systems of algebraic equations. In: Proceedings of the European computer algebra conference (EUROCAL 1983), Lecture Notes in Computer Science, vol. 162, pp. 146–156 (1983)

  15. Lazard D., Rouillier F.: Solving parametric polynomial systems. J. Symb. Comput. 42, 632–667 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lichtblau, D.: Cylinders through five points: complex and real enumerative geometry. In: Proceedings of the sixth international workshop on automated deduction in geometry (ADG 2006), Lecture Notes in Artificial Intelligence, vol. 4869, pp. 80–97[13]. Springer-Verlag (2007)

  17. Lichtblau D.: Cylinders through five points: computational algebra and geometry. J. Math. Res. 4, 65–82 (2012)

    Article  MathSciNet  Google Scholar 

  18. Macdonald I.G., Pach J., Theobald T.: Common tangents to four unit balls in \({\mathbb{R}^3}\). Discrete Comput. Geom. 26(1), 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Manubens, M., Montes, A.: Minimal canonical comprehensive Gröbner systems. J. Symb. Comput. 44, 463–478 (2009)

  20. Megyesi G.: Lines tangent to four unit spheres with coplanar centres. Discrete Comput. Geom. 26, 493–497 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Montes A.: A new algorithm for discussing gröbner bases with parameters. J. Symb. Comput. 33, 183–208 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Montes A., Wibner M.: Gröbner bases for polynomial systems with parameters. J. Symb. Comput. 45, 1391–1425 (2010)

    Article  MATH  Google Scholar 

  23. Schömer E., Sellen J., Teichmann M., Yap C.: Smallest enclosing cylinders. Algorithmica 27, 170–186 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Stetter, H.: Stabilization of polynomial systems solving with groebner bases. In: Proceedings of the 1997 international symposium on symbolic and algebraic computation (ISSAC 1997), pp. 117–124. ACM, New York (1997)

  25. Suzuki, A., Sato, Y.: A simple algorithm to compute comprehensive gröbner bases using gröbner bases. In: Proceedings of the 2006 international symposium on symbolic and algebraic computation (ISSAC 2006), pp. 326–331. ACM, New York (2006)

  26. Teller S., Hohmeyer M.: Determining the lines through four lines. J. Graph. Tools 4, 11–22 (1999)

    Article  Google Scholar 

  27. Theobald T.: An enumerative geometry framework for algorithmic line problems in \({\mathbb{R}^3}\). SIAM J. Comput. 31, 1212–1228 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Traverso, C., Zanoni, A.: Numerical stability and stabilization of Groebner basis computation. In: Proceedings of the 2002 international symposium on symbolic and algebraic computation (ISSAC 2002), pp. 262–269. ACM, New York (2002)

  29. Wallner J., Schröcker H.-P., Hu S.-M.: Tolerances in geometric constraint problems. Reliab. Comput. 11, 235–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, D.: The projection property of regular systems and its application to solving parametric polynomial systems. In: Algorithmic algebra and logic: proceedings of the A3L 2005, pp. 269–274 (2005)

  31. Weispfenning V.: Comprehensive gröbner bases. J. Symb. Comput. 14, 1–29 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wolfram Research. Mathematica 10 (2015). http://www.wolfram.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lichtblau.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lichtblau, D. First Order Perturbation and Local Stability of Parametrized Systems. Math.Comput.Sci. 10, 143–163 (2016). https://doi.org/10.1007/s11786-016-0249-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-016-0249-1

Keywords

Mathematics Subject Classification

Navigation