Skip to main content
Log in

Geometric Interpolation in n-Tuples of Noncommutative \(L_p\)-Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let \(\mathcal {M}\) be a von Neumann algebra with a normal faithful semifinite trace. In this paper, we consider that in n-tuples of noncommutative \(L_p\)-spaces \(l_s^{(n)}(L_p(\mathcal {M}))\), the norm is invariant under the action of invertible elements in \(\mathcal {M}\). Then we prove that the complex interpolating theorem in the case of \(l_s^{(n)}(L_p(\mathcal {M}))\). Using this result, we obtain that Clarkson’s inequalities for n-tuples of operators with weighted norm of noncommutative \(L_p\)-spaces, where the weight being a positive invertible operator in \(\mathcal {M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

No datasets were generated or analysed during the current study.

References

  1. Andruchow, E., Corach, G., Milman, M., Stojanoff, D.: Geodesics and interpolation. Rev. Union Mat. Argentina, 40 (3 and 4):83–91, (1997)

  2. Ball, K., Carlen, E.A., Lieb, E.H.: Sharp uniform convexity and smoothness inequalities for trace norms. Invent. Math. 115, 463–482 (1994)

    Article  MathSciNet  Google Scholar 

  3. Bekjan, T.N., Ospanov, K.N.: Complex interpolation of noncommutative Hardy spaces associated with semifinite von Neumann algebras. Acta Math. Sci. 40(1), 245–260 (2020)

    Article  MathSciNet  Google Scholar 

  4. Benedek, A., Panzone, R.: The spaces \({L}_p\), with mixed norm. Duke Math. J. 28, 301–324 (1961)

    Article  MathSciNet  Google Scholar 

  5. Bergh, J., Löfström, J.: Interpolation spaces. An Introduction. Springer-Verlag, New York, Orlando, FL (1976)

    Book  Google Scholar 

  6. Bhatia, R., Holbrook, J.: On the Clarkson-McCarthy inequalities. Math. Ann. 281, 7–12 (1988)

    Article  MathSciNet  Google Scholar 

  7. Bhatia, R., Kittaneh, F.: Norm inequalities for partitioned operators and an application. Math. Ann. 287, 719–726 (1990)

    Article  MathSciNet  Google Scholar 

  8. Bhatia, R., Kittaneh, F.: Clarkson inequalities with several operators. Bull. London Math. Soc. 36(6), 820–832 (2004)

    Article  MathSciNet  Google Scholar 

  9. Calderón, A.P.: Intermediate spaces and interpolation, the complex method. Studia Math. 24, 133–190 (1964)

    Article  MathSciNet  Google Scholar 

  10. Carlen, E.A., Lieb, E.H.: Optimal hypercontractivity for fermi fields and related non-commutative integration inequalities. Commun. Math. Phys. 155, 27–46 (1993)

    Article  Google Scholar 

  11. Clarkson, J.A.: Uniformly convex spaces. Trans. Amer. Math. Soc. 40, 39–414 (1936)

    Article  MathSciNet  Google Scholar 

  12. Cobos, F.: Clarkson’s inequalities for Sobolev spaces. Math. Jpn. 31, 17–22 (1986)

    MathSciNet  Google Scholar 

  13. Conde, C.: Geometric interpolation in \(p\)-Schatten class. J. Math. Anal. Appl. 340(2), 920–931 (2008)

    Article  MathSciNet  Google Scholar 

  14. Corach, G., Porta, H., Recht, L.: Geodesics and operator means in the space of positive operators. Internat. J. Math. 14, 193–202 (1993)

    Article  MathSciNet  Google Scholar 

  15. Corach, G., Porta, H., Recht, L.: The geometry of spaces of selfadjoint invertible elements of a \({C}^*\)-algebra. Integr. Equat. Oper. Th. 16, 333–359 (1993)

    Article  MathSciNet  Google Scholar 

  16. Gao, F., Li, M.: Clarkson-McCarthy inequalities for \(l_q({S}^p)\) spaces of operators. Results Math. 76(194), 1–14 (2021)

    Google Scholar 

  17. Hirzallah, O., Kittaneh, F.: Non-commutative Clarkson inequalities for unitarily invariant norms. Pac. J. Math. 202, 363–369 (2002)

    Article  MathSciNet  Google Scholar 

  18. Hirzallah, O., Kittaneh, F.: Non-commutative Clarkson inequalities for \(n\)-tuples of operators. Integr. Equat. Oper. Th. 60(3), 369–379 (2008)

    Article  MathSciNet  Google Scholar 

  19. Kato, M.: Generalized Clarkson’s inequalities and the norms of the Littlewood matrices. Math. Nachr. 114, 163–170 (1983)

    Article  MathSciNet  Google Scholar 

  20. Kato, M., Miyazaki, K.: On generalized Clarkson’s inequalities for \({L}_p(\mu; {L}_q (\nu ))\) and Sobolev spaces. Math. Jpn. 43, 505–515 (1996)

    Google Scholar 

  21. Kissin, E.: On Clarkson-McCarthy inequalities for \(n\)-tuples of operators. Proc. Am. Math. Soc. 135(8), 2483–2495 (2007)

    Article  MathSciNet  Google Scholar 

  22. Kittaneh, F.: On the continuity of the absolute value map in the Schatten classes. Linear Algebra Appl. 118, 61–68 (1989)

    Article  MathSciNet  Google Scholar 

  23. Maligranda, L., Persson, L.: On Clarkson’s inequalities and interpolation. Math. Nachr. 155, 187–197 (1992)

    Article  MathSciNet  Google Scholar 

  24. Maligranda, L., Persson, L.: Inequalities and interpolation. Collec. Math. 44, 181–199 (1993)

    Google Scholar 

  25. McCarthy, C.A.: \({C}_p\). Israel J. Math. 5, 249–271 (1967)

    Article  MathSciNet  Google Scholar 

  26. Milman, M.: Complex interpolation and geometry of Banach spaces. Ann. Math. Pura Appl. 136, 317–328 (1984)

    Article  MathSciNet  Google Scholar 

  27. Miyazaki, K., Kato, M.: On a vector-valued interpolation theoretical proof of the generalized Clarkson inequalities. Hiroshima Math. J. 24, 565–571 (1994)

    Article  MathSciNet  Google Scholar 

  28. Pisier, G.: Interpolation between \({H}^p\) spaces and non-commutative generalizations I. Pacific J. Math. 155, 341–368 (1992)

    Article  MathSciNet  Google Scholar 

  29. Ramaswany, S.: A simple proof of Clarkson’s inequality. Proc. Am. Math. Soc. 68, 249–250 (1978)

    MathSciNet  Google Scholar 

  30. Simon, B.: Trace ideals and their applications. Cambridge University Press, Orlando, FL (1979)

    Google Scholar 

  31. Tulenov, K.S., Akhymbek, M., Kassymov, A.: Clarkson inequalities on \({L}^p(\widehat{G})\) space associated with compact Lie group. J. Pseudo-Differ Oper 9, 443–450 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by “Research Project Supported by Shanxi Scholarship Council of China” no. 2020-031, “Fundamental Research Program of Shanxi Province” no. 202103021224104 and 202203021212211, “Chunhui Plan of Ministry of Education of China” no. 202200101 and “Scientific Research Fund of Taiyuan University of Technology” no. 2022QN098. The author would like to thank Professor Yazhou Han for the discussion of this paper.

Author information

Authors and Affiliations

Authors

Contributions

All authors have reviewed the manuscript.

Corresponding author

Correspondence to Feng Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Palle Jorgensen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F. Geometric Interpolation in n-Tuples of Noncommutative \(L_p\)-Spaces. Complex Anal. Oper. Theory 18, 89 (2024). https://doi.org/10.1007/s11785-024-01535-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-024-01535-z

Keywords

Mathematics Subject Classification

Navigation