Skip to main content
Log in

Fractional Gamma Noise Functionals

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We construct an infinite dimensional analysis with respect to non-Gaussian measures of fractional Gamma type which we call fractional Gamma noise measures. It turns out that the well-known Wick ordered polynomials in Gaussian analysis cannot be generalized to this non-Gaussian case. Instead of using generalized Appell polynomials we prove that a system of biorthogonal polynomials, called Appell system, is applicable to the fractional Gamma measures. Finally, we gives some new properties of the kernels expressed in terms of the Stirling operators of the first and second kind as well as the falling factorials in infinite dimensions and we construct the so-called fractional Gamma noise Gel’fand triple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Atangana, A.: Fractal–fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system. Chaos Solitons Fractals 102(2017), 396–406 (2017)

    Article  MathSciNet  Google Scholar 

  2. Ahokposi, D.P., Atangana, A., Vermeulen, D.P.: Modelling groundwater fractal ow with fractional differentiation via Mittag–Leffler law. Eur. Phys. J. Plus 132, 165–175 (2017)

    Article  Google Scholar 

  3. Asai, N., Kubo, I., Kuo, H.: Multiplicative renormalization and generating functions I. Taiwan. J. Math. 7(1), 89–101 (2003)

    Article  MathSciNet  Google Scholar 

  4. Albeverio, S., Daletsky, Y.L., Kondratiev, Y.G., Streit, L.: Non-Gaussian infinite-dimensional analysis. J. Funct. Anal. 138, 311–350 (1996)

    Article  MathSciNet  Google Scholar 

  5. Brouers, F.: The fractal (BSf) kinetics equation and its approximations. J. Mod. Phys. 5, 1594–1601 (2014)

    Article  Google Scholar 

  6. Bock, W., Desmettre, S., da Silva, J.L.: Integral representation of generalized grey Brownian motion. Stoch. Int. J. Probab. Stoch. Process. 92(4), 552–565 (2020)

    Article  MathSciNet  Google Scholar 

  7. Barhoumi, A., Ouerdiane, H., Riahi, A.: Pascal white noise calculus. Stoch. Int. J. Probab. Stoch. Process. 81(N3–4), 323–343 (2009)

    Article  MathSciNet  Google Scholar 

  8. Biagini, F., Hu, Y., Øksendal, B., Zhang, T.: Stochastic Calculus for Fractional Brownian Motion and Applications, Probability and Its Applications. Springer, London (2007)

    Google Scholar 

  9. Chen, W., Liang, Y.: New methodologies in fractional and fractal derivatives modeling. Chaos Solitons Fractals 102, 72–77 (2017)

    Article  MathSciNet  Google Scholar 

  10. Daletsky, Y.L.: Biorthogonal analogue of Hermite polynomials and the inversion of the Fourier transform with respect to a non-Gaussian measure. Funct. Anal. Appl. 25(2), 138–140 (1991)

    Article  MathSciNet  Google Scholar 

  11. Grothaus, M., Jahnert, F., Riemann, F., da Silva, J.L.: Mittag–Leffler analysis I: construction and characterization. J. Funct. Anal. 268, 1876–1903 (2015)

    Article  MathSciNet  Google Scholar 

  12. Hida, T.: Analysis of Brownian Functional. Carleton Mathematics Lecture Notes No. 13. Carleton University, Ottawa (1975)

  13. Laskin, N.: Fractional Poisson process. Commun. Nonlinear Sci. Numer. Simul. 8, 201–213 (2003)

    Article  MathSciNet  Google Scholar 

  14. Mishura, Y.S.: Stochastic Calculus for Fractional Brownian Motion and Related Processes. Lecture Notes in Mathematics. Springer, Berlin (2008)

  15. Mainardi, F., Gorenflo, R., Scalas, E.: A fractional generalization of the Poisson processes. Vietnam J. Math. 32, 53–64 (2004)

    MathSciNet  Google Scholar 

  16. Mainardi, F., Mura, A., Pagnini, G.: The M-Wright function in time-fractional diffusion processes: a tutorial survey. Int. J. Differ. Equ. 2010, 1–29 (2010)

    MathSciNet  Google Scholar 

  17. Kondratiev, Y.G., Lytvynov, E.W.: Operators of Gamma white noise calculus. Infin. Dimens. Anal. Quantum Probab. Relat. Topics 03(03), 303–335 (2000)

    Article  MathSciNet  Google Scholar 

  18. Kondratiev, Y.G., da Silva, J.L., Streit, L.: Generalized Appell systems. Methods Funct. Anal. Topol. 3(3), 28–61 (1997)

    MathSciNet  Google Scholar 

  19. Riahi, A., Rebei, H.: Pascal white noise harmonic analysis on configuration spaces and applications. Infin. Dimens. Anal. Quantum Probab. Relat. Topics 21(04), 1850024 (2018)

    Article  MathSciNet  Google Scholar 

  20. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7, 753–764 (1997)

    Article  MathSciNet  Google Scholar 

  21. Shaoa, W.-K., He, Y., Panb, J.: Some identities for the generalized Laguerre polynomials. J. Nonlinear Sci. Appl. 9, 3388–3396 (2016)

    Article  MathSciNet  Google Scholar 

  22. Pollard, H.: The complete monotonic character of the Mittag–Leffler function \(E_{\alpha }(-x)\). Bull. Am. Math. Soc. 54, 1115–1116 (1948)

    Article  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to King Saud University in Riyadh, Saudi Arabia for funding this research work through Researchers Supporting Project Number (RSPD2024R683).

Author information

Authors and Affiliations

Authors

Contributions

Mohamed Ayadi: Formal analysis, investigation, resources, writing, review and editing. Anis Riahi: Data curation, methodology, writing—review and editing. Mohamed Rhaima: Methodology, project administration, writing—review and editing. Hamza Ghoudi: Data curation, methodology, writing—review and editing.

Corresponding author

Correspondence to Mohamed Ayadi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Palle Jorgensen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Infinite-dimensional Analysis and Non-commutative Theory” edited by Marek Bozejko, Palle Jorgensen and Yuri Kondratiev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayadi, M., Riahi, A., Rhaima, M. et al. Fractional Gamma Noise Functionals. Complex Anal. Oper. Theory 18, 92 (2024). https://doi.org/10.1007/s11785-024-01534-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-024-01534-0

Keywords

Mathematics Subject Classification

Navigation