Skip to main content
Log in

New Hilbert Space Tools for Analysis of Graph Laplacians and Markov Processes

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The main objective of this paper is to develop the concepts and ideas used in the theory of weighted networks on infinite graphs. Our basic ingredients are a standard Borel space \((V, {{\mathcal {B}}})\) and symmetric \(\sigma \)-finite measure \(\rho \) on \((V\times V, {{\mathcal {B}}}\times {{\mathcal {B}}})\) supported by a symmetric Borel subset \(E \subset V\times V\). This setting is analogous to that of weighted networks and are used in various areas of mathematics such as Dirichlet forms, graphons, Borel equivalence relations, Guassian processes, determinantal point processes, joinings, etc. We define and study the properties of a measurable analogue of the graph Laplacian, finite energy Hilbert space, dissipation Hilbert space, and reversible Markov processes associated directly with the measurable framework. In the settings of networks on infinite graphs and standard Borel space, our present focus will be on the following two dichotomies: (i) Discrete vs continuous (or rather the measurable category); and (ii) deterministic vs stochastic. Both (i) and (ii) will be made precise inside our paper; in fact, this part constitutes a separate issue of independent interest. A main question we shall address in connection with both (i) and (ii) is that of limits. For example, what are the useful notions, and results, which yield measurable limits; more precisely, Borel structures arising as “limits” of systems of graph networks? We shall study it both in the abstract, and via concrete examples, especially models built on Bratteli diagrams. The question of limits is of basic interest; both as part of the study of dynamical systems on path- space; and also with regards to numerical considerations; and design of simulations. The particular contexts for the study of this question entails a careful design of appropriate Hilbert spaces, as well as operators acting between them. Our main results include: an explicit spectral theory for measure theoretic graph-Laplace operators; new properties of Green’s functions and corresponding reproducing kernel Hilbert spaces; structure theorems of the set of harmonic functions in \(L^2\)-spaces and finite energy Hilbert spaces; the theory of reproducing kernel Hilbert spaces related to Laplace operators; a rigorous analysis of the Laplacian on Borel equivalence relations; a new decomposition theory; irreducibility criteria; dynamical systems governed by endomorphisms and measurable fields; and path-space measures and induced dissipation Hilbert spaces. We discuss also several applications of our results to other fields such as machine learning problems, ergodic theory, and reproducing kernel Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. This means that the operator R is densely defined on functions from \(\mathcal D_{\textrm{fin}}(\mu )\); in particular, this property holds if \(c \in L^2(mu).\)

References

  1. Albeverio, S., Bernabei, M.S.: Homogenization in random Dirichlet forms. Stoch. Anal. Appl. 23(2), 341–364 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Fan, R., Herzberg, F.: Hyperfinite Dirichlet Forms and Stochastic Processes. Lecture Notes of the Unione Matematica Italiana, vol. 10. Springer, Heidelberg (2011)

    Google Scholar 

  3. Adams, G.T., Froelich, J., McGuire, P.J., Paulsen, V.I.: Analytic reproducing kernels and factorization. Indiana Univ. Math. J. 43(3), 839–856 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Alpay, D., Jorgensen, P.E.T.: Stochastic processes induced by singular operators. Numer. Funct. Anal. Optim. 33(7–9), 708–735 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Alpay, D., Jorgensen, P.: Reproducing kernel Hilbert spaces generated by the binomial coefficients. Ill. J. Math. 58(2), 471–495 (2014)

    MathSciNet  MATH  Google Scholar 

  6. Alpay, D., Jorgensen, P.: Spectral theory for Gaussian processes: reproducing kernels, boundaries, and \(L^2\)-wavelet generators with fractional scales. Numer. Funct. Anal. Optim. 36(10), 1239–1285 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Alpay, D., Jorgensen, P.E.T., Kimsey, D.P.: Moment problems in an infinite number of variables. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 18(4), 1550024 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Alpay, D., Jorgensen, P., Levanony, D.: A class of Gaussian processes with fractional spectral measures. J. Funct. Anal. 261(2), 507–541 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Alpay, D., Jorgensen, P., Levanony, D.: On the equivalence of probability spaces. J. Theoret. Probab. 30(3), 813–841 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Alpay, Daniel, Jorgensen, Palle, Lewkowicz, Izchak: \(W\)-Markov measures, transfer operators, wavelets and multiresolutions. In: Frames and harmonic analysis, volume 706 of Contemp. Math., pp. 293–343. Amer. Math. Soc., Providence, RI (2018)

  11. Alpay, D., Jorgensen, P., Lewkowicz, I., Martziano, I.: Infinite product representations for kernels and iterations of functions. In: Recent advances in inverse scattering, Schur analysis and stochastic processes, volume 244 of Oper. Theory Adv. Appl., pp. 67–87. Birkhäuser/Springer, Cham (2015)

  12. Alpay, D., Jorgensen, P., Volok, D.: Relative reproducing kernel Hilbert spaces. Proc. Am. Math. Soc. 142(11), 3889–3895 (2014)

    MathSciNet  MATH  Google Scholar 

  13. Albeverio, S., Kondratiev, Y., Nikiforov, R., Torbin, G.: On new fractal phenomena connected with infinite linear IFS. Math. Nachr. 290(8–9), 1163–1176 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Albeverio, S.: Theory of Dirichlet forms and applications. In: Lectures on probability theory and statistics (Saint-Flour, 2000), volume 1816 of Lecture Notes in Math., pp. 1–106. Springer, Berlin (2003)

  15. Argyriou, A., Micchelli, C.A., Pontil, M.: On spectral learning. J. Mach. Learn. Res. 11, 935–953 (2010)

    MathSciNet  MATH  Google Scholar 

  16. Albeverio, S., Ma, Z.-M., Röckner, M.: Quasi regular Dirichlet forms and the stochastic quantization problem. In: Festschrift Masatoshi Fukushima, volume 17 of Interdiscip. Math. Sci., pp. 27–58. World Sci. Publ., Hackensack, NJ (2015)

  17. Applebaum, D.: Lévy processes and stochastic calculus, volume 116 of Cambridge Studies in Advanced Mathematics, 2nd edn. Cambridge University Press, Cambridge (2009)

  18. Avella-Medina, M., Parise, F., Schaub, M.T., Segarra, S.: Centrality measures for graphons. CoRR, arXiv:abs/1707.09350 (2017)

  19. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    MathSciNet  MATH  Google Scholar 

  20. Aronszajn, N., Smith, K.T.: Characterization of positive reproducing kernels. Applications to Green’s functions. Am. J. Math. 79, 611–622 (1957)

    MathSciNet  MATH  Google Scholar 

  21. Atkinson, K.: Convergence rates for approximate eigenvalues of compact integral operators. SIAM J. Numer. Anal. 12, 213–222 (1975)

    MathSciNet  MATH  Google Scholar 

  22. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties and testing. Adv. Math. 219(6), 1801–1851 (2008)

    MathSciNet  MATH  Google Scholar 

  23. Borgs, C., Chayes, J.T., Lovász, L., Sós, V.T., Vesztergombi, K.: Convergent sequences of dense graphs II. Multiway cuts and statistical physics. Ann. Math. (2) 176(1), 151–219 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. Pure and Applied Mathematics, vol. 29. Academic Press, New York (1968)

    MATH  Google Scholar 

  25. Bezuglyi, S., Jorgensen, P.E.T.: Graph Laplace and Markov operators on a measure space. ArXiv e-prints (2018)

  26. Bezuglyi, S., Jorgensen, P.E.T.: Markov operators generated by symmetric measures. ArXiv e-prints (2018)

  27. Bezuglyi, S., Jorgensen, P.E.T.: Transfer operators, endomorphisms, and measurable partitions, volume 2217 of Lecture Notes in Mathematics. Springer, Cham (2018)

  28. Bezuglyi, S., Karpel, O.: Bratteli diagrams: structure, measures, dynamics. In: Dynamics and Numbers, volume 669 of Contemp. Math., pp. 1–36. Am. Math. Soc., Providence, RI (2016)

  29. Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys. 353(2), 853–903 (2017)

    MathSciNet  MATH  Google Scholar 

  30. Bufetov, A.I., Qiu, Y.: Equivalence of Palm measures for determinantal point processes associated with Hilbert spaces of holomorphic functions. C. R. Math. Acad. Sci. Paris 353(6), 551–555 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Kluwer, Boston (2004). (With a preface by Persi Diaconis)

    MATH  Google Scholar 

  32. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. London Mathematical Society Monographs Series, vol. 35. Princeton University Press, Princeton (2012)

    Google Scholar 

  33. Cornfeld, I.P., Fomin, S.V., Sinaĭ, Y.G.: Ergodic theory, volume 245 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1982). Translated from the Russian by A. B. Sosinskiĭ

  34. Chersi, F.: An ergodic decomposition of invariant measures for discrete semiflows on standard Borel spaces. In: Advanced Topics in the Theory of Dynamical Systems (Trento, 1987), volume 6 of Notes Rep. Math. Sci. Eng., pp. 75–87. Academic Press, Boston, MA (1989)

  35. Chen, Y.-C., Wheeler, T.A., Kochenderfer, M.J.: Learning discrete Bayesian networks from continuous data. J. Artif. Intell. Res. 59, 103–132 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Cucker, F., Zhou, D.-X.: Learning theory: an approximation theory viewpoint, volume 24 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge (2007). With a foreword by Stephen Smale

  37. de la Rue, T.: Joinings in ergodic theory. In: Mathematics of Complexity and Dynamical Systems. Vols. 1–3, pp. 796–809. Springer, New York (2012)

  38. Durand, F.: Combinatorics on Bratteli diagrams and dynamical systems. In: Combinatorics, automata and number theory, volume 135 of Encyclopedia Math. Appl., pp. 324–372. Cambridge Univ. Press, Cambridge (2010)

  39. Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Purely atomic representations of higher-rank graph \(C^*\)-algebras. Integr. Equ. Oper. Theory 90(6), Art 67, 26 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Farsi, C., Gillaspy, E., Jorgensen, P., Kang, S., Packer, J.: Representations of higher-rank graph \(C^*\)-algebras associated to \(\Lambda \)-semibranching function systems. J. Math. Anal. Appl. 468(2), 766–798 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. I. Trans. Am. Math. Soc. 234(2), 289–324 (1977)

    MathSciNet  MATH  Google Scholar 

  42. Feldman, J., Moore, C.C.: Ergodic equivalence relations, cohomology, and von Neumann algebras. II. Trans. Am. Math. Soc. 234(2), 325–359 (1977)

    MathSciNet  MATH  Google Scholar 

  43. Gao, S.: Invariant Descriptive Set Theory. Pure and Applied Mathematics (Boca Raton), vol. 293. CRC Press, Boca Raton (2009)

    Google Scholar 

  44. Guo, X., Fan, J., Zhou, D.-X.: Sparsity and error analysis of empirical feature-based regularization schemes. J. Mach. Learn. Res., 17, Paper No. 89, 34 (2016)

  45. Ghosh, S.: Determinantal processes and completeness of random exponentials: the critical case. Probab. Theory Relat. Fields 163(3–4), 643–665 (2015)

    MathSciNet  MATH  Google Scholar 

  46. Glasner, E.: Ergodic Theory via Joinings. Mathematical Surveys and Monographs, vol. 101. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  47. Giordano, T., Putnam, I.F., Skau, C.F.: Topological orbit equivalence and \(C^*\)-crossed products. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  MATH  Google Scholar 

  48. Greschonig, G., Schmidt, K.: Ergodic decomposition of quasi-invariant probability measures. Colloq. Math. 84/85(part 2), 495–514 (2000). Dedicated to the memory of Anzelm Iwanik

  49. Gim, M., Trutnau, G.: Conservativeness criteria for generalized Dirichlet forms. J. Math. Anal. Appl. 448(2), 1419–1449 (2017)

    MathSciNet  MATH  Google Scholar 

  50. Ben Hough, J., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian analytic functions and determinantal point processes, volume 51 of University Lecture Series. American Mathematical Society, Providence, RI (2009)

  51. Ho, K.-P.: Modular estimates of fractional integral operators and \(k\)-plane transforms. Integr. Transforms Spec. Funct. 28(11), 801–812 (2017)

    MathSciNet  MATH  Google Scholar 

  52. Herman, R.H., Putnam, I.F., Skau, C.F.: Ordered Bratteli diagrams, dimension groups and topological dynamics. Int. J. Math. 3(6), 827–864 (1992)

    MathSciNet  MATH  Google Scholar 

  53. Józiak, P.: Conditionally strictly negative definite kernels. Linear Multilinear Algebra 63(12), 2406–2418 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Janson, S.: Graphons, cut norm and distance, couplings and rearrangements, New York Journal of Mathematics. NYJM Monographs, vol. 4. State University of New York, University at Albany, Albany (2013)

    Google Scholar 

  55. Jackson, S., Kechris, A.S., Louveau, A.: Countable Borel equivalence relations. J. Math. Log. 2(1), 1–80 (2002)

    MathSciNet  MATH  Google Scholar 

  56. Jonsson, A.: A trace theorem for the Dirichlet form on the Sierpinski gasket. Math. Z. 250(3), 599–609 (2005)

    MathSciNet  MATH  Google Scholar 

  57. Jorgensen, P.E.T.: Unbounded graph-Laplacians in energy space, and their extensions. J. Appl. Math. Comput. 39(1–2), 155–187 (2012)

    MathSciNet  MATH  Google Scholar 

  58. Jorgensen, P.E.T., Peter James Pearse, E.: A Hilbert space approach to effective resistance metric. Complex Anal. Oper. Theory 4(4), 975–1013 (2010)

    MathSciNet  MATH  Google Scholar 

  59. Jorgensen, P.E.T., Pearse, E.P.J.: Resistance boundaries of infinite networks. In: Random walks, boundaries and spectra, volume 64 of Progr. Probab., pp. 111–142. Birkhäuser/Springer Basel AG, Basel (2011)

  60. Jorgensen, P.E.T., Pearse, E.P.J.: A discrete Gauss-Green identity for unbounded Laplace operators, and the transience of random walks. Isr. J. Math. 196(1), 113–160 (2013)

    MathSciNet  MATH  Google Scholar 

  61. Jorgensen, P.E.T., Pearse, E.P.J.: Spectral comparisons between networks with different conductance functions. J. Oper. Theory 72(1), 71–86 (2014)

    MathSciNet  MATH  Google Scholar 

  62. Jorgensen, P.E.T., Pearse, E.P.J.: Symmetric pairs and self-adjoint extensions of operators, with applications to energy networks. Complex Anal. Oper. Theory 10(7), 1535–1550 (2016)

    MathSciNet  MATH  Google Scholar 

  63. Jorgensen, P.E.T., Pearse, E.P.J.: Symmetric pairs of unbounded operators in Hilbert space, and their applications in mathematical physics. Math. Phys. Anal. Geom. 20(2), Art. 14, 24 (2017)

  64. Jorgensen, P., Tian, F.: Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses. J. Mach. Learn. Res. 16, 3079–3114 (2015)

    MathSciNet  MATH  Google Scholar 

  65. Jorgensen, P., Tian, F.: Nonuniform sampling, reproducing kernels, and the associated Hilbert spaces. Sampl. Theory Signal Image Process. 15, 37–72 (2016)

    MathSciNet  MATH  Google Scholar 

  66. Jorgensen, P., Tian, F.: Non-commutative Analysis. World Scientific, Hackensack (2017). (With a foreword by Wayne Polyzou)

    MATH  Google Scholar 

  67. Kaimanovich, V.A.: Dirichlet norms, capacities and generalized isoperimetric inequalities for Markov operators. Potential Anal. 1(1), 61–82 (1992)

    MathSciNet  MATH  Google Scholar 

  68. Kanovei, V.: Borel equivalence relations, volume 44 of University Lecture Series. American Mathematical Society, Providence, RI (2008). Structure and classification

  69. Kechris, A.S.: Classical Descriptive Set Theory. Graduate Texts in Mathematics, vol. 156. Springer, New York (1995)

    Google Scholar 

  70. Kechris, A.S.: Global Aspects of Ergodic Group Actions. Mathematical Surveys and Monographs, vol. 160. American Mathematical Society, Providence, RI (2010)

    Google Scholar 

  71. Kigami, J.: Analysis on Fractals. Cambridge Tracts in Mathematics, vol. 143. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  72. Kechris, A.S., Miller, B.D.: Topics in Orbit Equivalence. Lecture Notes in Mathematics, vol. 1852. Springer, Berlin (2004)

    MATH  Google Scholar 

  73. Kolmogorov, A.N.: Foundations of the Theory of Probability. Chelsea Publishing Company, New York (1950)

    Google Scholar 

  74. Koskela, P., Zhou, Y.: Geometry and analysis of Dirichlet forms. Adv. Math. 231(5), 2755–2801 (2012)

    MathSciNet  MATH  Google Scholar 

  75. Loeb, P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory. Trans. Am. Math. Soc. 211, 113–122 (1975)

    MathSciNet  MATH  Google Scholar 

  76. Lovász, L.: Large Networks and Graph Limits. American Mathematical Society Colloquium Publications, vol. 60. American Mathematical Society, Providence, RI (2012)

    Google Scholar 

  77. Lyons, R., Peres, Y.: Probability on Trees and Networks. Cambridge Series in Statistical and Probabilistic Mathematics, vol. 42. Cambridge University Press, New York (2016)

    MATH  Google Scholar 

  78. Lawler, G.F., Sokal, A.D.: Bounds on the \(L^2\) spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality. Trans. Am. Math. Soc. 309(2), 557–580 (1988)

    MATH  Google Scholar 

  79. Lyons, R.: Determinantal probability measures. Publ. Math. Inst. Hautes Études Sci. 98, 167–212 (2003)

    MathSciNet  MATH  Google Scholar 

  80. Ma, Z.M., Röckner, M.: Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Universitext. Springer, Berlin (1992)

    MATH  Google Scholar 

  81. Ma, Z.M., Röckner, M.: Markov processes associated with positivity preserving coercive forms. Canad. J. Math. 47(4), 817–840 (1995)

    MathSciNet  MATH  Google Scholar 

  82. Nummelin, E.: General Irreducible Markov Chains and Nonnegative Operators. Cambridge Tracts in Mathematics, vol. 83. Cambridge University Press, Cambridge (1984)

    Google Scholar 

  83. Oshima, Y.: Semi-Dirichlet Forms and Markov Processes. De Gruyter Studies in Mathematics, vol. 48. Walter de Gruyter, Berlin (2013)

    Google Scholar 

  84. Paulsen, V.I., Raghupathi, M.: An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics, vol. 152. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  85. Poggio, T., Smale, S.: The mathematics of learning: dealing with data. Notices Am. Math. Soc. 50(5), 537–544 (2003)

    MathSciNet  MATH  Google Scholar 

  86. Revuz, D.: Markov Chains. North-Holland Mathematical Library, vol. 11, 2nd edn. North-Holland, Amsterdam (1984)

    Google Scholar 

  87. Rohlin, V.A.: On the fundamental ideas of measure theory. Mat. Sbornik N.S. 25(67), 107–150 (1949)

    MathSciNet  Google Scholar 

  88. Rozkosz, A.: On Dirichlet processes associated with second order divergence form operators. Potential Anal. 14(2), 123–148 (2001)

    MathSciNet  MATH  Google Scholar 

  89. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44(3), 522–536 (1938)

    MathSciNet  MATH  Google Scholar 

  90. Simmons, D.: Conditional measures and conditional expectation; Rohlin’s disintegration theorem. Discrete Contin. Dyn. Syst. 32(7), 2565–2582 (2012)

    MathSciNet  MATH  Google Scholar 

  91. Saitoh, S., Sawano, Y.: Theory of Reproducing Kernels and Applications. Developments in Mathematics, vol. 44. Springer, Singapore (2016)

    MATH  Google Scholar 

  92. Smale, S., Yao, Y.: Online learning algorithms. Found. Comput. Math. 6(2), 145–170 (2006)

    MathSciNet  MATH  Google Scholar 

  93. Smale, S., Zhou, D.-X.: Learning theory estimates via integral operators and their approximations. Constr. Approx. 26(2), 153–172 (2007)

    MathSciNet  MATH  Google Scholar 

  94. Smale, S., Zhou, D.-X.: Geometry on probability spaces. Constr. Approx. 30(3), 311–323 (2009)

    MathSciNet  MATH  Google Scholar 

  95. Smale, S., Zhou, D.-X.: Online learning with Markov sampling. Anal. Appl. (Singap.) 7(1), 87–113 (2009)

    MathSciNet  MATH  Google Scholar 

  96. Woess, W.: Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Mathematics, vol. 138. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  97. Woess, W.: Denumerable Markov chains. EMS Textbooks in Mathematics. European Mathematical Society (EMS), Zürich (2009). Generating functions, boundary theory, random walks on trees

Download references

Acknowledgements

The authors are pleased to thank colleagues and collaborators, especially members of the seminars in Mathematical Physics and Operator Theory at the University of Iowa, where preliminary versions of this work have been presented. We acknowledge very helpful conversations with among others Professors Paul Muhly, Wayne Polyzou; and conversations at distance with Professors Daniel Alpay, and his colleagues at both Ben Gurion University, and Chapman University.

Author information

Authors and Affiliations

Authors

Contributions

Both authors wrote the manuscript. They contributed equally.

Corresponding author

Correspondence to Sergey Bezuglyi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Daniel Alpay.

To the memory of Moshe Samuilovich Liv̆sic.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Infinite-dimensional Analysis and Non-commutative Theory” edited by Marek Bozejko, Palle Jorgensen and Yuri Kondratiev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezuglyi, S., Jorgensen, P.E.T. New Hilbert Space Tools for Analysis of Graph Laplacians and Markov Processes. Complex Anal. Oper. Theory 17, 111 (2023). https://doi.org/10.1007/s11785-023-01412-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-023-01412-1

Keywords

Mathematics Subject Classification

Navigation