Skip to main content
Log in

Fractional Multicomplex Polynomials

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we will investigate fractional analytic properties of multi-complex valued polynomials defined on \(\mathbb {BC}_n\) (the space of multicomplex numbers refers to the space generated over the reals by n commuting imaginary units) using a modification of the Cauchy–Riemann operator that substitutes the classical partial derivative for a fractional derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. American Association of Physics Teachers (1988)

  2. Alsaedi, A., Nieto, J., Venktesh, V.: Fractional Electrical Circuits. Advances in Mechanical Engineering, SAGE (2015)

  3. Baleanu, D., Guvenc, Z., Machado, J. (Eds.): New Trends in Nanotechnology and Fractional Calculus Applications, XI, 531, ISBN Springer, 1st Edition (2010)

  4. Bolton, D.W.: The multinomial theorem. Math. Gazette, 52(382), 336–342

  5. Caputo, M.: Modeling social and economic cycles. In: Forte, F., Navarra, P., Mudambi, R. (eds.) Alternative Public Economics. Elgar, Cheltenham (2014)

  6. Caputo, M., Fabrizio, M.: Damage and fatigue described by a fractional derivative model. in press, J. Comput. Phys. (2014)

  7. Ceballos, J., Coloma, N., Di Teodoro, A., Ochoa-Tocachi, D.: Generalized fractional Cauchy–Riemann operator associated with the fractional Cauchy–Riemann operator. Adv. Appl. Clifford Algebras 30, 70 (2020)

    Article  MathSciNet  Google Scholar 

  8. Colombo, F., Sabadini, I., Struppa, D.C., Vajiac, A., Vajiac M.B.: Bicomplex hyperfunctions. Ann. Mat. Pura Appl. pp. 1–15 (2010)

  9. Colombo, F., Sabadini, I., Struppa, D.C., Vajiac, A., Vajiac, M.B.: Singularities of functions of one and several bicomplex variables. Arkiv for matematik, Institut Mittag-Leffler) (2011)

  10. Charak, K.S., Rochon, D., Sharma, N.: Normal families of bicomplex holomorphic functions. Fractals 17(3), 257–268 (2009)

    Article  MathSciNet  Google Scholar 

  11. Diethelm, K.: The Analysis of Fractional Differential Equations, An Application-Oriented Exposition Using Differential Operators of Caputo Type. Lecture Notes in Mathematics nr, vol. 2004. Springer, Heidelbereg (2010)

  12. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann–Liouville case. Complex Anal. Oper. Theory, 10-No. 5, 1081–1100 (2016)

  13. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific Publishing Co, Singapore (2003)

    MATH  Google Scholar 

  14. Jumarie, G.: New stochastic fractional models of the Malthusian growth, the Poissonian birth process and optimal management of populations. Math. Comput. Model. 44, 231–254 (2006)

    Article  MathSciNet  Google Scholar 

  15. Kähler, U., Vieira, N.: Fractional Clifford analysis. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds). Hypercomplex Analysis: New Perspectives and Applications. Trends in Mathematics. Basel: Birkähuser, 191–201 (2014)

  16. Kilbas, A., Marzan, S.: Non linear differential equations with caputo fractional derivative in the space of continuously differentiable functions. Differ. Equ. 41, 84–95 (2005)

    Article  MathSciNet  Google Scholar 

  17. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies-Vol. 204, Elsevier, Amsterdam (2006)

  18. Luna, E., Shapiro, M., Struppa, D., Vajiac, A.: Bicomplex Holomorphic Functions: The Algebra. Geometry and Analysis of Bicomplex Numbers, Birkauser (2010)

  19. Luna-Elizarraras, M.E., Shapiro, M.: On modules over bicomplex and hyperbolic numbers. In: Kovachera, R.K., Lawrynowics, J., Marchiafava, S. (eds) Applied Complex and Quaternionic Approximation, Edizioni Nuova Cultura, Roma, 76–92 (2009)

  20. Li, C., Zeng, F.: Numerical Methods for Fractional Calculus. Chapman and Hall/CRC (2019)

  21. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Inc., Publishers (2006)

  22. Miller, K.S., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  23. Naber, M.: Time fractional Schrödinger equation. J. Math. Phys. 45(8), 3339–3352 (2004)

    Article  MathSciNet  Google Scholar 

  24. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications, Mathematics in Science and Engineering, Academic Press, San Diego, CA (1999)

  25. Price, G.B.: An Introduction to Multicomplex Spaces and Functions, Monographs and Textbooks in Pure and Applied Mathematics, 140. Marcel Dekker Inc, New York (1991)

    Google Scholar 

  26. Rochon, D.: On a relation of bicomplex pseudoanalytic function theory to the complexified stationary Schrodinger equation. Complex Var. Elliptic Equ. 53(6), 501–521 (2008)

    Article  MathSciNet  Google Scholar 

  27. Ryan, J.: Complexified Clifford analysis. Complex Var. Elliptic Equ. 1, 119–149 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Sabatier, J., Agraval, O.P., Machado, J.A.T.: Advances in Fractional Calculus, Springer (2009)

  29. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

    MATH  Google Scholar 

  30. Struppa, D.C., Vajiac A., Vajiac, M.B.: Holomorphy in multicomplex spaces. In: Arendt, W., Ball, J., Behrndt, J., Förster, K.H., Mehrmann, V., Trunk, C. (eds) Spectral Theory, Mathematical System Theory, Evolution Equations, Differential and Difference Equations. Operator Theory: Advances and Applications, 221 (2012)

  31. Torres, D.F.M., Malinowska, A.B.: Introduction to the Fractional Calculus of Variations. Imperial College Press (2012)

  32. Vekua, I.N.: Generalized Analytic Functions. Addison-Wesly (1962)

Download references

Acknowledgements

The authors would like to thank the reviewers for the many useful comments which lead to improvements in the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Teodoro.

Additional information

Communicated by Irene Sabadini.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ceballos, J., Coloma, N., Di Teodoro, A. et al. Fractional Multicomplex Polynomials. Complex Anal. Oper. Theory 16, 60 (2022). https://doi.org/10.1007/s11785-022-01237-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-022-01237-4

Keywords

Mathematics Subject Classification

Navigation