Skip to main content
Log in

Inequalities for the Berezin number of operators and related questions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

For a bounded linear operator, acting in the reproducing kernel Hilbert space \({\mathcal {H}}={\mathcal {H}}\left( \Omega \right) \) over some set \(\Omega \), its Berezin symbol (or Berezin transform)\(\widetilde{\text { }A}\) is defined by

$$\begin{aligned} {\widetilde{A}}\left( \lambda \right) :=\left\langle A{\widehat{k}}_{\lambda },{\widehat{k}}_{\lambda }\right\rangle ,\text { }\lambda \in \Omega , \end{aligned}$$

which is a bounded complex-valued function on \(\Omega ;\) here \({\widehat{k}}_{\lambda }:=\frac{{\widehat{k}}_{\lambda }}{\left\| k_{\lambda }\right\| _{{\mathcal {H}}}}\) is the normalized reproducing kernel of \({\mathcal {H}}\). The Berezin set and the Berezin number of an operator A are defined respectively by

$$\begin{aligned} \mathrm {Ber}\left( A\right) :=\mathrm {Range}\left( {\widetilde{A}}\right) =\left\{ {\widetilde{A}}\left( \lambda \right) :\lambda \in \Omega \right\} \end{aligned}$$

and

$$\begin{aligned} \mathrm {ber}\left( A\right) :=\sup \left\{ \left| \gamma \right| :\gamma \in \mathrm {Ber}\left( A\right) \right\} =\sup _{\lambda \in \Omega }\left| {\widetilde{A}}\left( \lambda \right) \right| . \end{aligned}$$

Since \(\mathrm {Ber}\left( A\right) \subset W\left( A\right) \) (numerical range) and \(\mathrm {ber}\left( A\right) \le w\left( A\right) \) (numerical radius), it is natural to investigate these new numerical quantities of operators and to get some similar results as for numerical range and numerical radius. In this paper, we prove many different type inequalities, including power inequality \(\mathrm {ber}\left( A^{n}\right) \le \mathrm {ber}\left( A\right) ^{n}\) for the Berezin number of operators. We also study the uncertainty principle for Berezin symbols and we describe spectrum and compactness of functions of model operator in terms of Berezin symbols. Some related problems for de Branges-Rovnyak space operators are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahern, P., Floers, M., Rudin, W.: An important mean value property. J. Funct. Anal. 111(2), 389–397 (1993)

    Article  Google Scholar 

  2. Alomari, M.W.: On Pompeiu-Čebyšev type inequalities for selfadjoint operators in Hilbert spaces. Adv. Oper. Theory 3(3), 9–22 (2018)

    Article  Google Scholar 

  3. Aronzajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  4. Axler, S., Zheng, D.: The Berezin transform on the Toeplitz algebra. Stud. Math. 127(2), 113–136 (1998)

    MathSciNet  MATH  Google Scholar 

  5. Bakherad, M.: Some Berezin number inequalities for operator matrices. Czech. Math. J. 68(4), 997–1009 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bakherad, M., Garayev, M.T.: Berezin number inequalities for operators. Concr. Oper. 6(1), 33–43 (2019)

    Article  MathSciNet  Google Scholar 

  7. Berger, C.A., Coburn, L.A.: A symbol calculus for Toeplitz operators. Proc. Nat. Acad. Sci. 83, 3072–3073 (1986)

    Article  MathSciNet  Google Scholar 

  8. Chalendar, I., Frician, E., Gürdal, M., Karaev, M.T.: Compactness and Berezin symbols. Acta Sci. Math. 78, 315–329 (2012)

    MathSciNet  MATH  Google Scholar 

  9. Coburn, L.A.: Berezin transform and Weyl-type unitary operators on the Bergman space. Proc. Am. Math. Soc. 140, 3445–3451 (2012)

    Article  MathSciNet  Google Scholar 

  10. de Branges, L., Rovyank, J.: Canonical models in quantum scattering theory. In perturbation theory and its Applications in Quantum Mechanics, Wiley, New York (1966)

  11. de Branges, L., Rovyank, J.: Square summable power series, Holt, Rinehart and Winston, New York (1966)

  12. Douglas, R.G.: Banach algebra techniques in operator theory. Graduate Texts in Mathematics, vol. 179, 2nd edn, Springer (1998)

  13. Dragomir, S.S.: Some refinements of Schwarz inequality, Suppozionul de Math Si Appl. Polytechnical Inst Timisoara, Romania. 12, 13–16 (1985)

  14. Dragomir, S.S.: Čebyšev’s type inequalities for functions of selfadjoint operators in Hilbert spaces. Linear Multilinear Algebra 58(7–8), 805–814 (2010)

    Article  MathSciNet  Google Scholar 

  15. Dragomir, S.S.: Operator inequalities of the Jensen, Čebyšev and Grüss type. Springer, New York (2012)

    Book  Google Scholar 

  16. Engliš, M.: Toeplitz operators and the Berezin transform on \(H^{2}\). Linear Algebra Appl. 223–224, 171–204 (1995)

    Article  Google Scholar 

  17. Fricain, E.: Bases of reproducing kernels in de Branges spaces. J. Funct. Anal. 226, 373–405 (2005)

    Article  MathSciNet  Google Scholar 

  18. Fricain, E., Mashreghi, J.: The theory of \({\cal H\it }\left( b\right) \) spaces, volume 1 and 2. New Mathematical Monographs, 20 and 21, Cambridge University Press, Cambridge, (2016)

  19. Garayev, M.T., Yamancı, U.: Čebyšev type inequalities and power inequalities for Berezin numbers of operators. Filomat 33(6), 2307–2316 (2019)

    Article  MathSciNet  Google Scholar 

  20. Guillemin, V.: Toeplitz operators in \(n\)-dimensions. Integral Equ. Oper. Theory 7, 145–204 (1984)

    Article  MathSciNet  Google Scholar 

  21. Halmos, P.R.: A Hilbert space problem book. Van Nostrand Company Inc, Princeton, N.J. (1967)

    MATH  Google Scholar 

  22. Karaev, M.T.: Berezin symbols and Schatten-von Neumann classes. Math. Notes 72(2), 185–192 (2002)

    Article  MathSciNet  Google Scholar 

  23. Karaev, M.T., On the Berezin symbol, Zap. Nauch. Semin. POMI, 270, : 80–89 (Russian). Translated from Zapiski Nauchnykh Seminarov POMI 270 (2003), 2135–2140 (2000)

  24. Karaev, M.T.: On the Riccati equations. Monatshefte für Math. 155, 161–166 (2008)

    Article  MathSciNet  Google Scholar 

  25. Karaev, M.T.: Use of reproducing kernels and Berezin symbols technique in some questions of operator theory. Forum Math. 24(3), 553–564 (2012)

    Article  MathSciNet  Google Scholar 

  26. Karaev, M.T.: Reproducing kernels and Berezin symbols techniques in various questions of operator theory. Comp. Anal. Oper. Theory 7, 983–1018 (2013)

    Article  MathSciNet  Google Scholar 

  27. Karaev, M.T., Gürdal, M.: On the Berezin symbols and Toeplitz operators. Extr. Math. 25(1), 83–102 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Karaev, M.T., Gürdal, M., Huban, M.: Reproducing kernels, Engliš algebras and some applications. Stud. Math. 232(2), 113–141 (2016)

    MathSciNet  MATH  Google Scholar 

  29. Karaev, M.T., Iskenderov, N.S.: Berezin number of operators and related questions. Methods Funct. Anal. Topol. 19(1), 68–72 (2013)

    MathSciNet  MATH  Google Scholar 

  30. Karaev, M.T., Saltan, S.: Some results on Berezin symbols. Complex Var. 50(3), 185–193 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Kato, T.: Notes on some inequalities for linear operators. Math. Ann. 125, 208–212 (1952)

    Article  MathSciNet  Google Scholar 

  32. Kilic, S.: The Berezin symbol and multipliers of functional Hilbert spaces. Proc. Am. Math. Soc. 123(12), 3687–3691 (1995)

    Article  MathSciNet  Google Scholar 

  33. Kittaneh, F.: Norm inequalities for certian operator sums. J. Funct. Anal. 143(2), 337–348 (1997)

    Article  MathSciNet  Google Scholar 

  34. Kittaneh, F.: Notes on some inequalities for Hilbert space operators. Publ. Res. Inst. Math. Sci. 24(2), 283–293 (1988)

    Article  MathSciNet  Google Scholar 

  35. Nikolski, N.K.: Treatise on the shift operator. Springer, Berlin (1986)

    Book  Google Scholar 

  36. Nordgren, E., Rosenthal, P.: Boundary values of Berezin symbols. Oper. Theory Adv. Appl. 73, 362–368 (1994)

    MathSciNet  MATH  Google Scholar 

  37. Peller, V.V.: Hankel operators of class \(\sigma _{p}\) and their applications (rational approximation, Gaussian processes, the problem of majorizing operators). Mat. Sbornik 113(4), 538–581 (1980)

    MathSciNet  Google Scholar 

  38. Reid, W.: Symmetrizable completely continuous linear tarnsformations in Hilbert space. Duke Math. 18, 41–56 (1951)

    Article  MathSciNet  Google Scholar 

  39. Sarason, D.: Sub-Hardy Hilbert spaces in the unit disc. Lecture Notes in Mathematical Sciences, vol. 10, Wiley, New York (1994)

  40. K. Stroethoff, The Berezin transform and operators on spaces of analytic functions, Lin. Oper. Banach Center Publications, Polish Academy of Sciences, 38 (1997), 361-380

  41. Yamancı, U., Garayev, M.: Some results related to the Berezin number inequalities. Turk. J. Math. 43, 1940–1952 (2019)

    Article  MathSciNet  Google Scholar 

  42. Zhu, K.: Operator Theory in Function Spaces, Mathematical Surveys and Monographs. 2nd edn, vol. 138. American Mathematical Society, Providence, RI (2007)

Download references

Acknowledgements

The authors thank to the referee for useful remarks. The first author also thanks to Deanship of Scientic Research, College of Science Research Center, King Saud University for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Garayev.

Additional information

Communicated by Joseph Ball.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

This article is part of the topical collection “Reproducing kernel spaces and applications” edited by Daniel Alpay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garayev, M.T., Alomari, M.W. Inequalities for the Berezin number of operators and related questions. Complex Anal. Oper. Theory 15, 30 (2021). https://doi.org/10.1007/s11785-021-01078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-021-01078-7

Keywords

Mathematics Subject Classification

Navigation