Skip to main content
Log in

Compressed Resolvents, Schur Functions, Nevanlinna Families and Their Transformations

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

We study certain transformations of Nevanlinna families and Schur class operator-valued functions, construct their realizations by means of compressed resolvents and by the transfer functions of conservative systems, and find fixed points of such transformations. In particular, we characterize some automorphic Schur functions and corresponding them Nevanlinna families, including periodic and scale invariant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Akhiezer, N.I., Glazman, I.M.: Theory of Linear Operators in Hilbert Spaces. Monographs and Studies in Mathematics, vol. 9, 10. Pitman, Boston (1981)

    MATH  Google Scholar 

  2. Allen, G.D., Narcowich, F.J.: R-operators I. Representation theory and applications. Indiana Univ. Math. J. 25, 945–963 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Arens, R.: Operational calculus of linear relations. Pac. J. Math. 11, 9–23 (1976)

    MathSciNet  MATH  Google Scholar 

  4. Arlinskiĭ, Y.M.: A class of contractions in Hilbert space. Ukr. Mat. Zh. 39(6), 691–696 (1987). (Russian)

    MathSciNet  Google Scholar 

  5. Arlinskiĭ, Y.M.: Characteristic functions of operators of the class \(C(\alpha )\). Izv. Vyssh. Uchebn. Zaved. Mat. 2, 13–21 (1991). (Russian)

    MathSciNet  Google Scholar 

  6. Arlinskiĭ, Y.M.: Conservative discrete time-invariant systems and block operator CMV matrices. Methods Funct. Anal. Topol. 15(3), 201–236 (2009)

    MathSciNet  MATH  Google Scholar 

  7. Arlinskiĭ, Y.M.: Transformations of Nevanlinna operator-functions and their fixed points. Methods Funct. Anal. Topol. 23(3), 212–230 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Arlinskiĭ, Y.M., Belyi, S., Tsekanovskiĭ, E.: Conservative Realizations of Herglotz–Nevanlinna Functions, Operator Theory: Advances and Applications, vol. 217. Birkhauser, Basel (2011)

    MATH  Google Scholar 

  9. Arlinskiĭ, Y.M., Hassi, S.: Holomorphic operator valued functions generated by passive selfadjoint systems. Interpolation and realization theory with applications to control theory. Oper. Theory Adv. Appl. 272, 35–76 (2019)

    Google Scholar 

  10. Arlinskiĭ, Y.M., Hassi, S.: Stieltjes and inverse Stieltjes holomorphic families of linear relations and their representations. Stud. Math. 252(2), 129–167 (2020)

    MathSciNet  MATH  Google Scholar 

  11. Arlinskiĭ, Y.M., Hassi, S., de Snoo, H.S.V.: Parametrization of contractive block operator matrices and passive discrete-time systems. Complex Anal. Oper. Theory 1(2), 211–233 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Arov, D.Z.: Passive linear stationary dynamical systems. Sibirsk. Math. Zh. 20(2), 211–228 (1979). (Russian)

    MATH  Google Scholar 

  13. Arov, D.Z.: Stable dissipative linear stationary dynamical scattering systems. J. Oper. Theory, 1, 95–126 (1979). (Russian). English translation in Interpolation Theory, Systems, Theory and Related Topics, The Harry Dym Anniversary Volume, Oper. Theory Adv. Appl. 134, 99–136. Birkhäuser Verlag (2002)

  14. Arov, D.Z., Dym, H.: \(J\)-Contractive Matrix Valued Functions and Related Topics. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  15. Arsene, G., Gheondea, A.: Completing matrix contractions. J. Oper. Theory 7, 179–189 (1982)

    MathSciNet  MATH  Google Scholar 

  16. Azizov, T.Y., Dijksma, A., Wanjala, G.: Compressions of maximal dissipative and self-adjoint linear relations and of dilations. Linear Algebra Appl. 439, 771–792 (2013)

    MathSciNet  MATH  Google Scholar 

  17. Bakonyi, M., Constantinescu, T.: Schur’s Algorithm and Several Applications. Pitman Research Notes in Mathematics Series, vol. 261. Longman Scientific and Technical, Harlow (1992)

    MATH  Google Scholar 

  18. Ball, J.A., Cohen, N.: de Branges–Rovnyak operator models and systems theory: a survey. Topics in matrix and operator theory. Oper. Theory Adv. Appl. 50, 93–136 (1991)

    MATH  Google Scholar 

  19. Behrndt, J., Hassi, S., de Snoo, H.: Functional models for Nevanlinna families. Opusc. Math. 8(3), 233–245 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Behrndt, J., Hassi, S., de Snoo, H.: Boundary relations, unitary colligations, and functional models. Complex Anal. Oper. Theory 3, 57–98 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Behrndt, J., Hassi, S., de Snoo, H.: Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics, vol. 108. Birkhauser, Basel (2020)

    MATH  Google Scholar 

  22. Behrndt, J., Hassi, S., de Snoo, H., Wietsma, R., Winkler, H.: Linear fractional transformations of Nevanlinna functions associated with a nonnegative operator. Complex Anal. Oper. Theory 7(2), 1–32 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Bekker, M., Tsekanovskiĭ, E.: On periodic matrix-valued Weyl–Titchmarsh functions. J. Math. Anal. Appl. 294, 666–686 (2004)

    MathSciNet  MATH  Google Scholar 

  24. Brodskiĭ, M.S.: Triangular and Jordan representations of linear operators, Nauka, Moscow (1969). (Russian). English translation in Translations of Mathematical Monographs, vol. 32. American Mathematical Society, Providence, R.I. (1971)

  25. Brodskiĭ, M.S.: Unitary operator colligations and their characteristic functions, Uspekhi Mat. Nauk 33(4), 141–168 (1978). (Russian). English translation in Russian Math. Surv. 33(4), 159–191 (1978)

  26. Coddington, E.A.: Extension theory of formally normal and symmetric subspaces. Mem. Am. Math. Soc. 134, 1–80 (1973)

    MathSciNet  MATH  Google Scholar 

  27. Coddington, E.A., de Snoo, H.S.V.: Positive selfadjoint extensions of positive symmetric subspaces. Math. Z. 159, 203–214 (1978)

    MathSciNet  MATH  Google Scholar 

  28. Constantinescu, T.: Operator Schur algorithm and associated functions. Math. Balc. 2, 244–252 (1988)

    MathSciNet  MATH  Google Scholar 

  29. Daepp, U., Gorkin, P., Shaffer, A., Voss, K.: Möbius transformation and Blaschke products: the geometric connection. Linear Algebra Appl. 516, 186–271 (2017)

    MathSciNet  MATH  Google Scholar 

  30. de Branges, L., Rovnyak, J.: Appendix on square summable power series. Canonical models in quantum scattering theory. In: Perturbation Theory and its Applications in Quantum Mechanics, pp. 347–392. Wiley, New York (1966)

    MATH  Google Scholar 

  31. Davis, C., Kahan, W.M., Weinberger, H.F.: Norm preserving dilations and their applications to optimal error bounds. SIAM J. Numer. Anal. 19, 445–469 (1982)

    MathSciNet  MATH  Google Scholar 

  32. Derkach, V., Malamud, M.: Generalized resolvents and the boundary value problems for Hermitian operators with gaps. J. Funct. Anal. 95(1), 1–95 (1991)

    MathSciNet  MATH  Google Scholar 

  33. Derkach, V., Malamud, M.: Extension theory of symmetric operators and boundary value problems. In: Proceedings of Institute of Mathematics of NAS of Ukraine, vol. 104 (2017). (Russian)

  34. Derkach, V., Hassi, S., Malamud, M., de Snoo, H.S.V.: Boundary relations and their Weyl families. Trans. Am. Math. Soc. 358(12), 5351–5400 (2006)

    MathSciNet  MATH  Google Scholar 

  35. Derkach, V., Hassi, S., Malamud, M., de Snoo, H.S.V.: Boundary relations and generalized resolvents of symmetric operators. Russ. J. Math. Phys. 16(1), 17–60 (2009)

    MathSciNet  MATH  Google Scholar 

  36. Dijksma, A., Langer, H.: Compressions of self-adjoint extensions of a symmetric operator and M. G. Krein’s resolvent formula. Integral Equ. Oper. Theory 90(4), 30 (2018). Paper no. 41

    MathSciNet  MATH  Google Scholar 

  37. Dijksma, A., de Snoo, H.S.V.: Selfadjoint extensions of symmetric subspaces. Pac. J. Math. 54, 71–100 (1974)

    MATH  Google Scholar 

  38. Douglas, R.G.: On majorization, factorization and range inclusion of operators in Hilbert space. Proc. Am. Math. Soc. 17, 413–416 (1966)

    MATH  Google Scholar 

  39. Filimonov, A.P., Tsekanovskiĭ, E.R.: Automorphic-invariant operator colligations and the factorization of their characteristic operator-functions. Funkts. Anal. Prilozh. 21(4), 94–95 (1987). (Russian)

    MathSciNet  Google Scholar 

  40. Foias, C., Frazho, A.E.: The Commutant Lifting Approach to Interpolation Problems. Operator Theory: Advances and Applications, vol. 44. Birkhäuser, Basel (1990)

    MATH  Google Scholar 

  41. Ford, L.R.: Automorphic Functions, 2nd edn. Chelsea, New York (1951)

    MATH  Google Scholar 

  42. Gesztesy, F., Tsekanovskiĭ, E.R.: On matrix-valued Herglotz functions. Math. Nachr. 218, 61–138 (2000)

    MathSciNet  MATH  Google Scholar 

  43. Garnett, J.B.: Bounded Analytic Functions. Academic Press, Cambridge (1981)

    MATH  Google Scholar 

  44. Helton, J.W.: Discrete time systems, operator models, and scattering theory. J. Funct. Anal. 16, 15–38 (1974)

    MathSciNet  MATH  Google Scholar 

  45. Kac, I.S., Kreĭn, M.G.: \(R\)-functions—analytic functions mapping the upper halfplane into itself, supplement to the Russian edition of F.V. Atkinson, Discrete and Continuous Boundary problems, Mir, Moscow (1968). (Russian). English translation in American Mathematical Society Translation Series 2, 103, 1–18 (1974)

  46. Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  47. Kreĭn, M.G., Langer, H.: On defect subspaces and generalized resolvents of hermitian operator in the space \(\Pi _\kappa \). Funct. Anal. Appl. 5(2), 59–71 (1971). (Russian)

    MathSciNet  Google Scholar 

  48. Kreĭn, M.G., Shmul’yan, Y.L.: On linear fractional transformations with operator coefficients. Am. Math. Soc. Transl. 103, 125–152 (1974)

    MATH  Google Scholar 

  49. Kuzhel, A.V.: Characteristic Functions and Models of Nonself-Adjoint Operators. Mathematics and its Applications, vol. 349. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  50. Langer, H., Textorius, B.: On generalized resolvents and \(Q\)-functions of symmetric linear relations (subspaces) in Hilbert space. Pac. J. Math. 72, 135–165 (1977)

    MathSciNet  MATH  Google Scholar 

  51. Lehner, J.: A Short Course in Automorphic Functions. Holt, Rinehart and Winston, New York (1966)

    MATH  Google Scholar 

  52. Mashreghi, J.: Blaschke products as solutions of a functional equations. Blaschke products and their applications. In: Proceedings Based on the Presentations at the Conference, July 25–29, 2011, vol. 65, pp. 113–118. Springer, Fields Institute for Research in Mathematical Sciences, Fields Institute Communications, Toronto, Canada, New York, NY (2013)

  53. Nordgren, E., Rosental, P., Wintrobe, F.S.: Invertible composition operators in \(H^p\). J. Funct. Anal. 73, 324–344 (1987)

    MathSciNet  MATH  Google Scholar 

  54. Pavlov, B.S.: Selfadjoint dilation of the dissipative Schrödinger operator and its resolution in terms of eigenfunctions. Matematicheskii Sbornik 102(4), 511–536 (1977). (Russian). English translation in Math. USSR Sb. 31, 457–478 (1977)

  55. Pommerenke, C.: On the Green’s function of fuchsian groups. Ann. Acad. Sci. Fenn. Ser. A. I. Math. 2, 409–427 (1976)

    MathSciNet  MATH  Google Scholar 

  56. Redheffer, R.M.: On certain linear fractional transformation. J. Math. Phys. 39, 269–286 (1960)

    MathSciNet  MATH  Google Scholar 

  57. Shmul’yan, Y.L.: The operator R-functions. Sibirsk. Mat. Zh. 12, 442–451 (1971). (Russian)

    Google Scholar 

  58. Shmul’yan, Y.L.: Certain stability properties for analytic operator-valued functions. Mat. Zametki 20(4), 511–520 (1976). (Russian)

    MathSciNet  Google Scholar 

  59. Shmul’yan, Y.L.: Transformers of linear relations in J-spaces. Funktz. Analiz i Prilozh. 14(2), 39–44 (1980). (Russian)

    MathSciNet  MATH  Google Scholar 

  60. Shmul’yan, Y.L.: Generalized linear fractional transformations of operator balls. Sibirsk. Mat. Zh. 21(5), 728–740 (1980). (Russian)

    MATH  Google Scholar 

  61. Shmul’yan, Y.L., Yanovskaya, R.N.: Blocks of a contractive operator matrix. Izv. Vuzov. Mat. 7, 72–75 (1981). (Russian)

    MathSciNet  MATH  Google Scholar 

  62. Shtraus, A.V.: Generalized resolvents of symmetric operators. Izvestiya AN SSSR 18, 51–86 (1954). (Russian)

    MathSciNet  Google Scholar 

  63. Shtraus, A.V.: On the theory of extremal extensions of a bounded positive operator. Funct. Anal. Ul’yanovsk. Gos. Ped. Inst. Ul’yanovsk 18, 115–126 (1982). (Russian)

    MathSciNet  MATH  Google Scholar 

  64. Solomyak, B.M.: Functional model for dissipative operators. A coordinate-free approach. Zap. LOMI 178, 57–91 (1989). (Russian). English translation in J. Math. Sci. 61(2), 1981–2002 (1992)

  65. Staffans, O.: Well-Posed Linear Systems. Encyclopedia of Mathematics and its Applications, vol. 103. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  66. Staffans, O.: Passive Linear Discrete Time-Invariant Systems. International Congress of Mathematicians, vol. III, pp. 1367–1388. European Mathematical Society, Zurich (2006)

    MATH  Google Scholar 

  67. Sz.-Nagy, B., Foias, C.: Harmonic Analysis of Operators on Hilbert Space. North-Holland, New York (1970)

    MATH  Google Scholar 

  68. Timotin, D.: Redheffer products and characteristic functions. J. Math. Anal. Appl. 196, 823–840 (1991)

    MathSciNet  MATH  Google Scholar 

  69. Zhang, F.: The Schur Complement and its Applications. Springer, Berlin (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

It is my great pleasure to thank referees for their careful reading of the paper, for valuable remarks and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. M. Arlinskiĭ.

Additional information

Communicated by Sanne ter Horst, Dmitry S. Kaliuzhnyi-Verbovetskyi and Izchak Lewkowicz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Linear Operators and Linear Systems” edited by Sanne ter Horst, Dmitry S. Kaliuzhnyi-Verbovetskyi and Izchak Lewkowicz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arlinskiĭ, Y.M. Compressed Resolvents, Schur Functions, Nevanlinna Families and Their Transformations. Complex Anal. Oper. Theory 14, 63 (2020). https://doi.org/10.1007/s11785-020-01019-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01019-w

Keywords

Mathematics Subject Classification

Navigation