Skip to main content
Log in

A Dirichlet Boundary Value Problem for Fractional Monogenic Functions in the Riemann–Liouville Sense

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

This paper solves the Dirichlet boundary value problem of distinguishing domains for Clifford fractional–monogenic functions in \(\mathbb {R}^{n}\) for fixed n, in the Riemann–Liouville sense. To do so, we use a matrix representation of the Clifford algebras. This allows us to construct computational algorithms that efficiently perform the calculations necessary to guarantee the existence of a solution for the Dirichlet boundary value problem over a properly distinguished domain. Finally, we show some explicit solutions for the Dirichlet boundary problem in \(\mathbb {R}^{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The simply connected domain \(\Omega \) is given by (1.1).

  2. It is important to emphasize that each component \(u_{A}\) has to satisfy the hypothesis of Theorem 2.7.

References

  1. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis, vol. 76. Pitman Books Limited, Boston (1982)

    MATH  Google Scholar 

  2. Caputo, M., Fabrizio, M.: A New Definition of Fractional Derivative Without Singular Kernel. Progress in Fractional Differentiation and Applications, vol. 2. Natural Sciences Publishing, New York (2015)

    Google Scholar 

  3. Delanghe, R., Sommen, F., Soucek, V.: Clifford Algebra and Spinors-Valued Functions. Kluwer Academic, Dordrecht (1992)

    Book  Google Scholar 

  4. Di Teodoro, A.: A boundary valued problem for a jump Cauchy–Riemann operator in a Clifford type algebra. In: Proceedings of the 15th International Conference on Mathematical Methods in Science and Engineering (2015)

  5. Di Teodoro, A., Franquiz, R., López, A.: A modified Dirac operator in parameter-dependent Clifford algebra: a physical realization. Adv. Appl. Clifford Algebras 25(2), 303–320 (2015)

    Article  MathSciNet  Google Scholar 

  6. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators: the Riemann–Liouville case. Complex Anal. Oper. Theory 10(5), 1081–1100 (2016)

    Article  MathSciNet  Google Scholar 

  7. Ferreira, M., Vieira, N.: Eigenfunctions and fundamental solutions of the fractional Laplace and Dirac operators using Caputo derivatives. Complex Var. Elliptic Equ. 62(9), 1237–1253 (2017)

    Article  MathSciNet  Google Scholar 

  8. Folland, G.: Introduction to Partial Differential Equations, vol. 2. Princeton, Princeton University Press (1995)

    MATH  Google Scholar 

  9. Gambo, Y., Jarad, F., Abdeljawad, T., Baleanu, D.: On Caputo modification of the Hadamard fractional derivative. Adv. Differ. Equ. 1–10 (2014)

  10. Hamaker, Z.: Clifford Algebra Representation. The Division of Science, Mathematics, and Computing of Bard College (2008)

  11. Kähler, U., Vieira, N.: Fractional Clifford analysis. In: Bernstein, S., Kähler, U., Sabadini, I., Sommen, F. (eds.) Hypercomplex Analysis: New Perspectives and Applications, pp. 191–201. Springer, Cham (2014)

    MATH  Google Scholar 

  12. Kilbas, A.: Hadamard type fractional calculus. J. Korean Math. Soc. 38(6), 1191–1204 (2001)

    MathSciNet  MATH  Google Scholar 

  13. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  14. Lee, D., Song, Y.: The matrix representation of Clifford algebra. J. Chungcheong Math. Soc. 23(2), 363–368 (2010)

    Google Scholar 

  15. Lee, D., Song, Y.: Explicit matrix realization of Clifford algebras. Adv. Appl. Clifford Algebras 23, 441–451 (2013)

    Article  MathSciNet  Google Scholar 

  16. Losada, J., Nieto, J.: Properties of a New Fractional Derivative Without Singular Kernel. Progress in Fractional Differentiation and Applications, vol. 1. Natural Sciences Publishing, New York (2015)

    Google Scholar 

  17. Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  18. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, London (1993)

    MATH  Google Scholar 

  19. Miranda, C.: Partial Differential Equations of Elliptic Type. Springer, Berlin (1970)

    Book  Google Scholar 

  20. Mshimba, A.S., Tutschke, W.: Functional analytic methods in complex analysis and applications to partial differential equations. In: Proceedings of the Second Workshop, ICTP, Trieste, vol. 14 (3), pp 25–29 (1995)

  21. Peña Peña, D., Sommen, F.: Vekua-type systems related to two-sided monogenic functions. Complex Anal. Oper. Theory 6(2), 397–405 (2012)

    Article  MathSciNet  Google Scholar 

  22. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Elsevier, Amsterdam (1998)

    MATH  Google Scholar 

  23. Samko, S.G., Kilbas, A.A., Marichev, O.I., et al.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  24. Song, Y., Lee, D.: A construction of matrix representation of Clifford algebras. Adv. Appl. Clifford Algebras 25, 719–731 (2015)

    Article  MathSciNet  Google Scholar 

  25. Tutschke, W.: Generalized analytic functions in higher dimensions. Georgian Math. J. 14(3), 581–595 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Tutschke, W.: Boundary value problems for elliptic equations-real and complex methods in comparison. In: Complex Analysis and Applications ’13 (Proceedings of the Internal Conference, Sofia, 2013), pp. 322–365 (2013)

  27. Tutschke, W.: The distinguishing boundary for monogenic functions of Clifford analysis. Adv. Appl. Clifford Algebras 25(2), 441–451 (2015)

    Article  MathSciNet  Google Scholar 

  28. Tutschke, W., Vanegas, C.J.: Clifford algebras depending on parameters and their applications to partial differential equations. Contained in Some Topics on Value Distribution and Differentiability in Complex and p-adic Analysis. Mathematics Monograph Series, vol. 11, pp. 430–450. Beijing Science Press (2008)

  29. Tutschke, W., Vanegas, C.J.: A boundary value problem for monogenic functions in parameter-depending Clifford algebras. Complex Var. Elliptic Equ. 56(1–4), 113–118 (2011)

    Article  MathSciNet  Google Scholar 

  30. Tutschke, W., Vasudeva, H.: An Introduction to Complex Analysis: Classical and Modern Approaches. Chapman and Hall, London (2004)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewers for many useful comments which lead to substantial improvements of the paper. Also, we want to thank Diego Ochoa for the discussions that allowed to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Teodoro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection“Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Armendáriz, D., Ceballos, J. & Di Teodoro, A. A Dirichlet Boundary Value Problem for Fractional Monogenic Functions in the Riemann–Liouville Sense. Complex Anal. Oper. Theory 14, 51 (2020). https://doi.org/10.1007/s11785-020-01008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-020-01008-z

Keywords

Mathematics Subject Classification

Navigation