Skip to main content
Log in

Stability of the Kaczmarz Reconstruction for Stationary Sequences

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

The Kaczmarz algorithm is an iterative method to reconstruct an unknown vector f from inner products \(\langle f , \varphi _{n} \rangle \). We consider the problem of how additive noise affects the reconstruction under the assumption that \(\{ \varphi _{n} \}\) form a stationary sequence. Unlike other reconstruction methods, such as frame reconstructions, the Kaczmarz reconstruction is unstable in the presence of noise. We show, however, that the reconstruction can be stabilized by relaxing the Kaczmarz algorithm; this relaxation corresponds to Abel summation when viewed as a reconstruction on the unit disc. We show, moreover, that for certain noise profiles, such as those that lie in \(H^{\infty }(\mathbb {D})\) or certain subspaces of \(H^{2}(\mathbb {D})\), the relaxed version of the Kaczmarz algorithm can fully remove the corruption by noise in the inner products. Using the spectral representation of stationary sequences, we show that our relaxed version of the Kaczmarz algorithm also stabilizes the reconstruction of Fourier series expansions in \(L^2(\mu )\) when \(\mu \) is singular.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboud, A., Curl, E., Harding, S.N., Vaughan, M., Weber, E.S.: The dual Kaczmarz algorithm. Acta Appl. Math. (2019). https://doi.org/10.1007/s10440-019-00244-6

    Article  Google Scholar 

  2. Aleksandrov, A.B.: Inner functions and related spaces of pseudocontinuable functions. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989). no. Issled. Lineĭn. Oper. Teorii Funktsiĭ. 17, 7–33, 321

  3. Beurling, A.: On two problems concerning linear transformations in Hilbert space. Acta Math. 81, 17 (1948)

    MathSciNet  Google Scholar 

  4. Casazza, P.: The art of frame theory. Taiwan. J. Math. 4(2), 129–201 (2000)

    Article  MathSciNet  Google Scholar 

  5. Clark, D.N.: One dimensional perturbations of restricted shifts. J. Anal. Math. 25, 169–191 (1972)

    Article  MathSciNet  Google Scholar 

  6. Chen, X., Powell, A.M.: Randomized subspace actions and fusion frames. Constr. Approx. 43(1), 103–134 (2016)

    Article  MathSciNet  Google Scholar 

  7. Czaja, W., Tanis, J.H.: Kaczmarz algorithm and frames. Int. J. Wavelets Multiresolut. Inf. Process. 11(5), 1350036 (2013)

    Article  MathSciNet  Google Scholar 

  8. de Branges, L., Rovnyak, J.: Square Summable Power Series. Holt, Rinehart and Winston, New York (1966)

    MATH  Google Scholar 

  9. Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  Google Scholar 

  10. Dutkay, D.E., Han, D., Weber, E.: Continuous and discrete Fourier frames for fractal measures. Trans. Am. Math. Soc. 366(3), 1213–1235 (2014)

    Article  MathSciNet  Google Scholar 

  11. Duffin, R., Schaeffer, A.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  12. Eggermont, P.P.B., Herman, G.T., Lent, A.: Iterative algorithms for large partitioned linear systems, with applications to image reconstruction. Linear Algebra Appl. 40, 37–67 (1981)

    Article  MathSciNet  Google Scholar 

  13. Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (ART) for threedimensional electron microscopy and x-ray photography. J. Theor. Biol. 29(3), 471–481 (1970)

    Article  Google Scholar 

  14. Herr, J.E.: Fourier series for singular measures and the Kaczmarz algorithm. Thesis (Ph.D.), Iowa State University. ProQuest LLC, Ann Arbor (2016). http://lib.dr.iastate.edu/etd/14978/. Accessed 5 Apr 2019

  15. Herr, J.E., Jorgensen, P.E.T., Weber, E.S.: Positive matrices in the Hardy space with prescribed boundary representations via the Kaczmarz algorithm. To appear in J. Anal. Math. (2016). arXiv:1603.08852v1

  16. Herr, J.E., Jorgensen, P.E.T., Weber, E.S.: A matrix characterization of boundary representations of positive matrices in the Hardy space. In: Kim, Y., Narayan, S., Picioroaga, G., Weber, E.S. (eds.) Frames and Harmonic Analysis, Contemp. Math., vol. 706. American Mathematical Society, Providence, pp. 255–270 (2018)

  17. Herr, J.E., Jorgensen, P.E.T., Weber, E.S.: Harmonic analysis of fractal measures: basis and frame algorithms. To appear in Analysis, Probability and Mathematical Physics on Fractals. Fractals and Dynamics in Mathematics, Science, and the Arts (2019)

  18. Hegde, C., Keinert, F., Weber, E.S.: A Kaczmarz algorithm for tree based distributed systems of equations. Preprint (2019). arXiv:1904.05732

  19. Haller, R., Szwarc, R.: Kaczmarz algorithm in Hilbert space. Studia Math. 169(2), 123–132 (2005)

    Article  MathSciNet  Google Scholar 

  20. Herr, J.E., Weber, E.S.: Fourier series for singular measures. Axioms 6(2), 7 (2017). https://doi.org/10.3390/axioms6020007

    Article  MATH  Google Scholar 

  21. Kaczmarz, S.: Angenäherte auflösung von systemen linearer gleichungen. Bulletin International de l’Académie Plonaise des Sciences et des Lettres. Classe des Sciences Mathématiques et Naturelles. Série A. Sciences Mathématiques 35, 355–357 (1937)

    MATH  Google Scholar 

  22. Kwapień, S., Mycielski, J.: On the Kaczmarz algorithm of approximation in infinite-dimensional spaces. Studia Math. 148(1), 75–86 (2001)

    Article  MathSciNet  Google Scholar 

  23. Koosis, P.: Introduction to \(H_p\) Spaces. Cambridge Tracts in Mathematics, vol. 115, 2nd edn. Cambridge University Press, Cambridge (1998). (With two appendices by V. P. Havin [Viktor Petrovich Khavin])

    MATH  Google Scholar 

  24. Natterer, F.: The Mathematics of Computerized Tomography. Teubner, Stuttgart (1986)

    MATH  Google Scholar 

  25. Nikol’skiĭ, N.K.: Treatise on the Shift Operator. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1986). (Spectral function theory, With an appendix by S. V. Hruščev [S. V. Khrushchëv] and V. V. Peller, Translated from the Russian by Jaak Peetre)

    Book  Google Scholar 

  26. Needell, D., Srebro, N., Ward, R.: Stochastic gradient descent, weighted sampling, and the randomized Kaczmarz algorithm. Math. Program. 155(1–2), 549–573 (2016)

    Article  MathSciNet  Google Scholar 

  27. Needell, D., Zhao, R., Zouzias, A.: Randomized block Kaczmarz method with projection for solving least squares. Linear Algebra Appl. 484, 322–343 (2015)

    Article  MathSciNet  Google Scholar 

  28. Poltoratskiĭ, A.G.: Boundary behavior of pseudocontinuable functions. Algebra i Analiz 5(2), 189–210 (1993). English translation in St. Petersburg Math. 5(2), 389–406 (1994)

  29. Sarason, D.: Sub-Hardy Hilbert Spaces in the Unit Disk. University of Arkansas Lecture Notes in the Mathematical Sciences, vol. 10. Wiley, New York (1994)

    MATH  Google Scholar 

  30. Strohmer, T., Vershynin, R.: A randomized Kaczmarz algorithm with exponential convergence. J. Fourier Anal. Appl. 15(2), 262–278 (2009)

    Article  MathSciNet  Google Scholar 

  31. Szwarc, R.: Kaczmarz algorithm in Hilbert space and tight frames. Appl. Comput. Harmon. Anal. 22(3), 382–385 (2007)

    Article  MathSciNet  Google Scholar 

  32. Tanabe, K.: Projection method for solving a singular system of linear equations and its application. Numer. Math. 17, 203–214 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Lee Przybylski and Eric Weber were supported in part by the National Science Foundation and National Geospatial-Intelligence Agency under award #1830254.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric S. Weber.

Additional information

Communicated by Daniel Aron Alpay.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Proof of Proposition 2

The first statement follows from the second, but an alternative proof can be found in [10, Theorem 3.10]. The second statement follows from Fatou’s construction [23, Section II.A]. \(\square \)

Proof of Lemma 3

For the inner function \(b^{K}\), let \(\mu ^{K}\) denote the corresponding singular measure. By the Herglotz Representation, \(\mu<< \mu ^{K}\). Since by [28] every \(f \in H^2 \ominus b^{K} H^2\) has convergent Fourier series in \(L^2(\mu ^{K})\), it follows that the Fourier series also converges in \(L^2(\mu )\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camrud, C., Camrud, E., Przybylski, L. et al. Stability of the Kaczmarz Reconstruction for Stationary Sequences. Complex Anal. Oper. Theory 13, 3405–3427 (2019). https://doi.org/10.1007/s11785-019-00945-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-019-00945-8

Keywords

Mathematics Subject Classification

Navigation