Skip to main content
Log in

Darboux Transformation of the Laguerre Operator

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

Let \({\mathcal {L}}_{\alpha }\) be a Laguerre operator with \(\alpha \not \in {\mathbb {Z}}_{-}=\{-1,-2,\ldots \}\). Constructing the pairs of the factorization operators \(\mathrm {L},\mathrm {R}\) or \({\mathfrak {L}},{\mathfrak {R}}\) such that \({\mathcal {L}}_{\alpha }=\mathrm {LR}\) or \({\mathcal {L}}_{\alpha }={\mathfrak {L}}{\mathfrak {R}}\). In the first case, the Darboux transformation \({\mathbf {D}}^{\alpha +}\) of \({\mathcal {L}}_{\alpha }\) is the Laguerre operator \({\mathcal {L}}_{\alpha +1}=\mathrm {RL}\) and the eigenfunctions transform by a Christoffel formula. In the second case, the Darboux transformation \({\mathbf {D}}^{\alpha -}\) of \({\mathcal {L}}_{\alpha }\) is the Laguerre operator \({\mathcal {L}}_{\alpha -1}={\mathfrak {R}}{\mathfrak {L}}\) and the eigenfunctions transform by a Geronimus formula. The Darboux transformations \({\mathbf {D}}^{\alpha +}\) and \({\mathbf {D}}^{\alpha -}\) establish the relations between classical and non-classical Laguerre operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Bohm, D.: Quantum Theory. Prentice Hall, New York (1951)

    Google Scholar 

  3. Bueno, M.I., Marcellán, F.: Darboux transformation and perturbation of linear functionals. Linear Algebra Appl. 384, 215–242 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Derkach, V.A.: On extensions of Laguerre operator in Pontryagin space. In: Proceedings of the 5th Crimean Autumn Mathematical School-Symposium, p. 194. Simferopol (1996)

  5. Hajmirzaahmad, M.: Laguerre polynomial expansions. J. Comput. Appl. Math. 59, 25–37 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kovalyov, I.: Darboux transformation of generalized Jacobi matrices. Methods Funct. Anal. Topol. 20(4), 301–320 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Kovalyov, I.: Darboux transformation with parameter of generalized Jacobi matrices. J. Math. Sci. 222(6), 703–722 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Krall, A.M.: Laguerre expansions in indefinite inner product spaces. J. Math. Anal. Appl. 70, 267–279 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Krall, A.M.: On boundary values for the Laguerre operator in indefinite inner product spaces. J. Math. Anal. Appl. 85, 406–408 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Phisics, Volume 4: Quantum Electrodymamics. Pergamon Press, Oxford (1982)

    Google Scholar 

  11. Messiah, A.: Quantum Mechanics, vol. 1. North Holland, Amsterdam (1961)

    MATH  Google Scholar 

  12. Morton, R.D., Krall, A.M.: Distributional weight functions for orthogonal polynomials. SIAM J. Math. Anal. 2, 604–626 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  13. Suetin, P.K.: Classical Orthogonal Polynomials, 2nd edn. Nauka, Moscow (1979)

    MATH  Google Scholar 

  14. Szegö, G.: Orthogonal Polynomials, 4th edn. AMS, Providence (1975)

    MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Volkswagen Foundation, grants of Ministry of Education and Science of Ukraine (Project Numbers 0115U000136, 0115U000556).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Kovalyov.

Additional information

Communicated by Behrndt, Colombo and Naboko.

Appendix: Discrete Analog of the Darboux Transformation

Appendix: Discrete Analog of the Darboux Transformation

As well known (see [13, 14]), the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\) satisfies a three-term recurrence relation

$$\begin{aligned} x\widetilde{L}_{n}(x,\alpha )= & {} \widetilde{L}_{n+1}(x,\alpha )+(2n+\alpha +1) \widetilde{L}_{n}(x,\alpha )\nonumber \\&+ (n+\alpha )n\widetilde{L}_{n-1}(x,\alpha )\end{aligned}$$
(5.1)

for all \(n\in {\mathbb {Z}}_{+} \text{ and } \alpha \not \in {\mathbb {Z}}_{-}\), with the initial condition \(\widetilde{L}_{-1}(x,\alpha )=0\).

The matrix

$$\begin{aligned} J=\left( \begin{array}{ccccc} 1+\alpha &{}\quad 1 &{} &{} &{} \\ 1+\alpha &{}\quad 3+\alpha &{}\quad 1 &{} &{} \\ &{}\quad 2(2+\alpha ) &{}\quad 5+\alpha &{}\quad 1 &{} \\ &{} &{}\quad 3(3+\alpha ) &{}\quad 7+\alpha &{}\quad \ddots \\ &{} &{} &{}\quad \ddots &{}\quad \ddots \\ \end{array}\right) \end{aligned}$$
(5.2)

is called a monic Jacobi matrix associated with the three-term recurrence relation (5.1), i.e. we mean the matrix J as a discrete Laguerre operator. On the other hand, we can rewrite the relation (5.1) as follows

$$\begin{aligned} J\mathbf{P }(x)=x\mathbf{P }(x),\end{aligned}$$
(5.3)

where \(\mathbf{P }(x)=\left( \begin{array}{cccc} \widetilde{L}_{0}(x,\alpha ), &{} \widetilde{L}_{1}(x,\alpha ), &{} \widetilde{L}_{2}(x,\alpha ), &{}\ldots \\ \end{array}\right) ^{T}.\)

1.1 Discrete Analog of the Darboux Transformation \({\mathbf {D}}^{\alpha +}\)

Theorem 5.1

Let \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\) be the sequence of the monic Laguerre polynomials with \(\alpha \not \in {\mathbb {Z}}_{-}\) and let J be the monic Jacobi matrix associated with the sequence \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\). Then the monic Jacobi matrix J admits the LU-factorization

$$\begin{aligned} J=LU,\end{aligned}$$
(5.4)

where

$$\begin{aligned} L=\left( \begin{array}{ccccc} 1 &{} &{} &{} &{} \\ 1 &{}\quad 1 &{} &{} &{} \\ &{}\quad 2 &{}\quad 1 &{} &{} \\ &{} &{}\quad 3 &{}\quad 1 &{} \\ &{} &{} &{} \quad \ddots &{}\quad \ddots \\ \end{array}\right) \text{ and } U=\left( \begin{array}{ccccc} 1+\alpha &{}\quad 1 &{} &{} &{} \\ &{} \quad 2+\alpha &{}\quad 1&{} &{} \\ &{} &{}\quad 3+\alpha &{}\quad 1 &{} \\ &{} &{} &{}\quad 4+\alpha &{} \quad \ddots \\ &{} &{} &{} &{}\quad \ddots \\ \end{array}\right) .\qquad \end{aligned}$$
(5.5)

Proof

The all monic Laguerre polynomials \(\widetilde{L}_{n}(x,\alpha )\) do not vanish at 0, [see (1.11), (2.43)]. Then by Lemma 2.1 in [3] (or Theorem 3.5 in [6]) the monic Jacobi matrix J admits the LU-factorization of the form (5.4)–(5.5). This completes the proof.\(\square \)

Theorem 5.2

Let J be the monic Jacobi matrix associated with the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\) with \(\alpha \not \in \mathbb {Z_{-}}\) and let \(J=LU\) be its LU-factorization of the form (5.4)–(5.5). Then the matrix

$$\begin{aligned} J^{(p)}=UL\end{aligned}$$
(5.6)

is the monic Jacobi matrix associated with the sequence \(\{\widetilde{L}_{n}(x,\alpha +1)\}_{n=0}^{\infty }\).

Proof

By Lemma 3.1 in [3] (or [6, Theorem 3.10]) the matrix

$$\begin{aligned} J^{(p)}=UL=\left( \begin{array}{ccccc} 2+\alpha &{}\quad 1 &{} &{} &{} \\ 2+\alpha &{}\quad 4+\alpha &{}\quad 1 &{} &{} \\ &{} \quad 2(3+\alpha ) &{} \quad 6+\alpha &{}\quad 1 &{} \\ &{} &{} \quad 3(4+\alpha ) &{}\quad 8+\alpha &{}\quad \ddots \\ &{} &{} &{}\quad \ddots &{}\quad \ddots \\ \end{array}\right) \end{aligned}$$
(5.7)

is the monic Jacobi matrix and by [6, Theorem 3.19]

$$\begin{aligned} J^{(p)}\mathbf{P }^{(p)}(x)=x\mathbf{P }^{(p)}(x), \end{aligned}$$
(5.8)

where

$$\begin{aligned} \mathbf{P }^{(p)}(x)= & {} \frac{1}{x}U\mathbf{P }(x)\\= & {} \frac{1}{x}\left( \widetilde{L}_{1}(x,\alpha )+(1+\alpha )\widetilde{L}_{0}(x,\alpha ),\right. \\&\left. \widetilde{L}_{2}(x,\alpha )+(2+\alpha )\widetilde{L}_{1}(x,\alpha ), \ldots \right) ^{T}. \end{aligned}$$

On the other hand, by Theorem 2.12

$$\begin{aligned} \mathbf{P }^{(p)}(x)= {\widetilde{L}_{0}(x,\alpha +1),\quad \widetilde{L}_{1}(x,\alpha +1), \quad \ldots }^{T}. \end{aligned}$$
(5.9)

Hence, the monic Jacobi matrix \(J^{(p)}=UL\) is associated with the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha +1)\}_{n=0}^{\infty }\), i.e the Darboux transformation without parameter of the monic Jacobi matrix J of the form (5.2) transforms the monic Laguerre polynomials by the Christoffel formula (2.44). This completes the proof. \(\square \)

1.2 m-Function Transform for \(\mathbf{D }^{\alpha +} (\alpha >-1)\)

The m-function of the monic Jacobi matrix J can be found by

$$\begin{aligned} m_{\alpha }(\lambda )=\int \limits _{0}^{+\infty }\frac{\omega _{\alpha }(x)}{x-\lambda }dx, \end{aligned}$$
(5.10)

where \(\omega _{\alpha }\) is the weight function defined by (1.2).

Lemma 5.3

Let \(J=LU\) and \(J^{(p)}=UL\) be the monic Jacobi matrices. Let \(m_{\alpha }\) and \(m_{\alpha +1}\) be the m-functions of J and \(J^{(p)}\). Then

$$\begin{aligned} m_{\alpha +1}(\lambda )=\lambda m_{\alpha }(\lambda )+\Gamma (\alpha +1). \end{aligned}$$
(5.11)

Proof

Calculating the m-function of \(J^{(p)}\)

$$\begin{aligned} m_{\alpha +1}(\lambda )= & {} \int \limits _{0}^{+\infty }\frac{x^{\alpha +1}e^{-x}}{x-\lambda }dx= \int \limits _{0}^{+\infty }\frac{x^{\alpha }(x-\lambda +\lambda )e^{-x}}{x-\lambda }dx\nonumber \\= & {} \int \limits _{0}^{+\infty }\frac{x^{\alpha }(x-\lambda )e^{-x}}{x-\lambda }dx+\lambda \int \limits _{0}^{+\infty }\frac{x^{\alpha }e^{-x}}{x-\lambda }dx=\Gamma (\alpha +1)+\lambda m_{\alpha }(\lambda ).\nonumber \\ \end{aligned}$$
(5.12)

\(\square \)

1.3 Discrete Analog of the Darboux Transformation \({\mathbf {D}}^{\alpha -}\)

As was shown in [3, 7] that the all monic Jacobi matrices admit an UL-factorization of the form

$$\begin{aligned} J=UL,\end{aligned}$$
(5.13)

where L and U are lower and upper triangular matrices defined by

$$\begin{aligned} L=\left( \begin{array}{cccc} 1 &{} &{} &{} \\ b_{1}+S_{0}&{}\quad 1 &{} &{} \\ &{} \quad b_{2}+S_{1} &{}\quad 1 &{} \\ &{} &{}\quad \ddots &{}\quad \ddots \\ \end{array}\right) \quad \text{ and } \quad U=\left( \begin{array}{cccc} -S_{0} &{}\quad 1 &{} &{} \\ &{}\quad -S_{1} &{}\quad 1 &{} \\ &{} &{}\quad -S_{2} &{}\quad \ddots \\ &{} &{} &{} \quad \ddots \\ \end{array}\right) \nonumber \\ \end{aligned}$$
(5.14)

and \(S_{0}\) is the some parameter.

Lemma 5.4

Let J be the monic Jacobi matrix associated with the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\) and let \(S_{0}=\alpha \) and \(\alpha \not \in \mathbb {Z_{-}}\). Then the matrix J admits the UL-factorization

$$\begin{aligned} J=UL,\end{aligned}$$
(5.15)

where the matrices L and U are defined by (5.14) with

$$\begin{aligned} S_{n}=n+\alpha \quad \text{ and } \quad b_{n+1}+S_{n}=n+1\qquad n\in {\mathbb {Z}}_{+}.\end{aligned}$$
(5.16)

Proof

By [3, Proposition 2.4] (or [7, Theorem 3.6]) the matrix J admits the UL-factorization with parameter \(S_{0}=\alpha \). Moreover, the matrices L and U are defined by

$$\begin{aligned} L=\left( \begin{array}{ccccc} 1 &{} &{} &{} &{} \\ 1&{}\quad 1 &{} &{} &{} \\ &{}\quad 2 &{}\quad 1 &{} &{} \\ &{} &{}\quad 3&{}\quad 1 &{} \\ &{}&{} &{}\quad \ddots &{}\quad \ddots \\ \end{array}\right) \text{ and } U=\left( \begin{array}{ccccc} \alpha &{}\quad 1 &{} &{} &{} \\ &{}\quad 1+\alpha &{}\quad 1 &{} &{} \\ &{}&{}\quad 2+\alpha &{}\quad 1 &{} \\ &{} &{} &{}\quad 3+\alpha &{}\quad \ddots \\ &{} &{} &{} &{}\quad \ddots \\ \end{array}\right) .\nonumber \\ \end{aligned}$$
(5.17)

This completes the proof. \(\square \)

Theorem 5.5

Let J be the monic Jacobi matrix associated with the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha )\}_{n=0}^{\infty }\) with \(\alpha \not \in \mathbb {Z_{-}}\) and let \(J=LU\) be its LU-factorization of the form (5.4)–(5.5). Then the matrix

$$\begin{aligned} J^{(d)}=LU\end{aligned}$$
(5.18)

is the monic Jacobi matrix associated with the sequence \(\{\widetilde{L}_{n}(x,\alpha -1)\}_{n=0}^{\infty }\).

Proof

Consider the product LU of the matrices L and U

$$\begin{aligned} LU=\left( \begin{array}{ccccc} \alpha &{}\quad 1 &{} &{} &{} \\ \alpha &{}\quad 2+\alpha &{}\quad 1 &{} &{} \\ &{} \quad 2(1+\alpha ) &{}\quad 4+\alpha &{}\quad 1 &{} \\ &{} &{}\quad 3(2+\alpha ) &{}\quad 6+\alpha &{}\quad \ddots \\ &{} &{} &{}\quad \ddots &{}\quad \ddots \\ \end{array} \right) \qquad \alpha \not \in \mathbb {Z_{-}}.\end{aligned}$$
(5.19)

Therefore the matrices \(J^{(d)}=LU\) is the monic Jacobi matrix and by [7, Theorem 3.8]

$$\begin{aligned} J^{(d)}\mathbf{P }^{(d)}(x)=x\mathbf{P }^{(d)}(x),\end{aligned}$$
(5.20)

where

$$\begin{aligned} \mathbf{P }^{(d)}(x)=L\mathbf{P }(x)=(\begin{array}{ccccc} \widetilde{L}_{0}(x,\alpha ), &{} \widetilde{L}_{1}(x,\alpha )+ \widetilde{L}_{0}(x,\alpha ), &{} \widetilde{L}_{2}(x,\alpha )+ 2\widetilde{L}_{1}(x,\alpha ),&{} \ldots \\ \end{array})^{T}. \end{aligned}$$

By Theorem 3.12 the relation (5.3) is rewritten as follows

$$\begin{aligned} \mathbf{P }^{(d)}(x)=(\begin{array}{ccccc} \widetilde{L}_{0}(x,\alpha -1), &{} \widetilde{L}_{1}(x,\alpha -1), &{} \widetilde{L}_{2}(x,\alpha -1),&{} \ldots \\ \end{array})^{T}, \end{aligned}$$
(5.21)

i.e the monic Jacobi matrix \(J^{(d)}=LU\) is associated with the sequence of the monic Laguerre polynomials \(\{\widetilde{L}_{n}(x,\alpha -1)\}_{n=0}^{\infty }\). This completes the proof. \(\square \)

1.4 m-Function Transform for \(\mathbf{D }^{\alpha -} (\alpha >-1)\)

Lemma 5.6

Let J and \(J^{(d)}\) be the monic Jacobi matrices. Let \(m_{\alpha }\) and \(m_{\alpha +1}\) be the m-functions of J and \(J^{(d)}\). Then

$$\begin{aligned} m_{\alpha }(\lambda )=\lambda m_{\alpha -1}(\lambda )+\Gamma (\alpha ). \end{aligned}$$
(5.22)

Proof

Calculating \(m_{\alpha }\)

$$\begin{aligned} m_{\alpha }(\lambda )= & {} \int \limits _{0}^{+\infty }\frac{x^{\alpha }e^{-x}}{x-\lambda }dx=\int \limits _{0}^{+\infty }\frac{x^{\alpha -1}(x-\lambda +\lambda )e^{-x}}{x-\lambda }dx\\= & {} \int \limits _{0}^{+\infty }\frac{x^{\alpha -1}(x-\lambda )e^{-x}}{x-\lambda }dx +\lambda \int \limits _{0}^{+\infty }\frac{x^{\alpha -1}e^{-x}}{x-\lambda }dx =\Gamma (\alpha )+\lambda m_{\alpha -1}(\lambda ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovalyov, I. Darboux Transformation of the Laguerre Operator. Complex Anal. Oper. Theory 12, 787–809 (2018). https://doi.org/10.1007/s11785-018-0769-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-018-0769-6

Navigation