Skip to main content
Log in

Discrete Complex Analysis in Split Quaternions

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

A natural question in discrete complex analysis is whether the Taylor series of a discrete holomorphic function is convergent to itself in the whole grid \({\mathbb {Z}}_h^2\). In this paper we answer this question in the affirmative in the setting of a new kind of discrete holomorphic function on the square grid \({\mathbb {Z}}_h^2\) with values in split quaternions based on the methods of Sheffer sequences. On the other hand, we also establish the integral theory for this new kind of discrete holomorphic functions, including the discrete Green theorem and the Cauchy integral formula. In contrast to the discrete Clifford analysis, we obtain a new version of the discrete Cauchy integral formula without the extra error term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexa, M., Wardetzky, M.: Discrete Laplacians on general polygonal meshes. ACM Trans. Graph. 30, 102:1–102:10 (2011)

    Article  Google Scholar 

  2. Alpay, D., Jorgensen, P., Seager, R., Volok, D.: On discrete analytic functions: products, rational functions and reproducing kernels. J. Appl. Math. Comput. 41, 393–426 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berzsenyi, G.: Line integrals for monodiffric functions. J. Math. Anal. Appl. 30, 99–112 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bobenko, A.I., Mercat, C., Schmies, M.: Period matrices of polyhedral surfaces. In: Bobenko, A.I., Klein, C. (eds.) Computational Approach to Riemann Surfaces. Lecture notes in mathematics, vol. 2013 (2011)

  5. Bobenko, A.I., Mercat, C., Suris, Y.B.: Linear and nonlinear theories of discrete analytic functions. Integrable structure and isomonodromic Green’s function. J. Reine Angew. Math. 583, 117–161 (2005)

  6. Brackx, F., De Schepper, H., Sommen, F., Van de Voorde, L.: Discrete Clifford analysis: a germ of function theory. In: Sabadini, I., Shapiro, M., Sommen, F. (eds.) Hypercomplex Analysis, pp. 37–53. Birkhäuser, Basel (2009)

    Google Scholar 

  7. Deeter, C.R., Lord, M.E.: Further theory of operational calculus on discrete analytic functions. J. Math. Anal. Appl. 26, 92–113 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Ridder, H., De Schepper, H., Sommen, F.: Taylor series expansion in discrete Clifford analysis. Complex Anal. Oper. Theory 8, 485–511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duffin, R.J.: Basic properties of discrete analytic functions. Duke Math. J. 23, 335–363 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  10. Duffin, R.J., Duris, C.S.: A convolution product for discrete function theory. Duke Math. J. 31, 199–220 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferrand, J.: Functions préharharmonogues et fonctions préholomorphes. Bull. Sci. Math. 68, 152–180 (1944)

    MathSciNet  MATH  Google Scholar 

  12. Hayabara, S.: Operators of discrete analytic functions and their application. Proc. Japan Acad. 42, 601–604 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geom. Dedicata 123, 89–112 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Isaacs, R.: A finite difference function theory. Univ. Nac. Tucumán. Revista A. 2, 177–201 (1941)

    MathSciNet  MATH  Google Scholar 

  15. Kurowski, G.J.: Further results in the theory of monodiffric functions. Pac. J. Math. 18, 139–147 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mercat, Ch.: Discrete Riemann surfaces and the Ising model. Comm. Math. Phys. 218, 177–216 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Prasolov, M., Skopenkov, M.: Tilings by rectangles and alternating current. J. Comb. Theory Ser. A 118, 920–937 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Smirnov, S.: Discrete complex analysis and probability. In: Proceedings of the International Congress of Mathematicians, vol. 1, pp. 595–621. Hindustan Book Agency, New Delhi (2010)

  19. Tu, S.T.: Monodiffric function theory and formal power series. J. Math. Anal. Appl. 84, 595–613 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wardetzky, M., Mathur, S., Kaberer, F., Grinspun, E.: Discrete Laplace operators: no free lunch. In: A. Belyaev, M. Garland (eds.) Eurographics Symposium on Geometry Processing, (2007)

  21. Zeilberger, D.: A new basis for discrete analytic polynomials. J. Aust. Math. Soc. Ser. A 23, 95–104 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zeilberger, D.: Discrete analytic functions of exponential growth. Trans. Am. Math. Soc. 226, 181–189 (1977)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeping Zhu.

Additional information

Communicated by Frank Sommen.

This work was supported by the NNSF of China (11371337).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G., Zhu, Z. Discrete Complex Analysis in Split Quaternions. Complex Anal. Oper. Theory 12, 415–438 (2018). https://doi.org/10.1007/s11785-017-0664-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0664-6

Keywords

Mathematics Subject Classification

Navigation