Skip to main content
Log in

Hypercomplex Polynomials, Vietoris’ Rational Numbers and a Related Integer Numbers Sequence

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

This paper aims to give new insights into homogeneous hypercomplex Appell polynomials through the study of some interesting arithmetical properties of their coefficients. Here Appell polynomials are introduced as constituting a hypercomplex generalized geometric series whose fundamental role sometimes seems to have been neglected. Surprisingly, in the simplest non-commutative case their rational coefficient sequence reduces to a coefficient sequence \({\mathcal {S}}\) used in a celebrated theorem on positive trigonometric sums by Vietoris (Sitzungsber Österr Akad Wiss 167:125–135, 1958). For \({\mathcal {S}}\) a generating function is obtained which allows to derive an interesting relation to a result deduced by Askey and Steinig (Trans AMS 187(1):295–307, 1974) about some trigonometric series. The further study of \({\mathcal {S}}\) is concerned with a sequence of integers leading to its irreducible representation and its relation to central binomial coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Quoted by R. Siegmund-Schultze in: Ausgewahlte Kapitel aus der Funktionenlehre, Teubner, Leipzig, 1988, p. 253, including the re-publication of Weierstrass’ “Zur Funktionentheorie,” published in Mittag-Leffler’s commemorative issue of Acta Mathematica, 45 (1925), pp. 1–0.

  2. This is different from the case of several complex variables where in the expansion of the Cauchy kernel a multiple geometric series as generalization of the ordinary geometric series arises.

References

  1. Appell, P.: Sur une classe de polynômes. Ann. Sci. École Norm. Sup. 9(2), 119–144 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  2. Askey, R., Steinig, J.: Some positive trigonometric sums. Trans. AMS 187(1), 295–307 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bock, S., Gürlebeck, K.: On a generalized Appell system and monogenic power series. Math. Methods Appl. Sci. 33(4), 394–411 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Brackx, F.: Two powerful theorems in Clifford analysis. In: AIP Conference Proceedings, 1281, Issue 1 (2010)

  5. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London (1982)

    MATH  Google Scholar 

  6. Brackx, F., Delanghe, R., Sommen, F.: Cauchy-Kowalewski theorems in Clifford analysis: a survey. In: Proceedings of the 11th Winter School on Abstract Analysis. Circolo Matematico di Palermo, Palermo. Rendiconti del Circolo Matematico di Palermo, Serie II, Zdeněk Frolík (ed.) (1984)

  7. Cação, I., Falcão, M.I., Malonek, H.R.: Laguerre derivative and monogenic Laguerre polynomials: an operational approach. Math. Comput. Model. 53(5–6), 1084–1094 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cação, I., Falcão, M.I., Malonek, H.R.: Matrix representations of a special polynomial sequence in arbitrary dimension. Comput. Methods Funct. Theory 12(2), 371–391 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company, Dordrecht (1974)

    Book  MATH  Google Scholar 

  10. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions. A Function Theory for the Dirac Operator. Mathematics and its Applications, vol. 53. Kluwer Academic Publishers, Dordrecht (1992)

    MATH  Google Scholar 

  11. Eelbode, D.: Monogenic Appell sets as representations of the Heisenberg algebra. Adv. Appl. Clifford Algebra 22(4), 1009–1023 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdös, P., Graham, R.: Old and new problems and results in combinatorial number theory. L’Enseignement Mathématique Vol. 28 Université de Genève, (1980)

  13. Falcão, M.I., Malonek, H.R.: Generalized exponentials through Appell sets in \({\mathbb{R}}^{n+1}\) and Bessel functions. In Theodore E. Simos, George Psihoyios, and Ch. Tsitouras (eds.) AIP Conference Proceedings, vol. 936, pp. 738–741 (2007)

  14. Falcão, M.I., Malonek, H.R.: A note on a one-parameter family of non-symmetric number triangles. Opusc. Math. 32(4), 661–673 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fueter, R.: Analytische funktionen einer quaternionenvariablen. Comment. Math. Helv. 4, 9–20 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and \(n\)-dimensional Space. Birkhäuser Verlag, Basel (2008). Translated from the 2006 German original

  17. Lávička, R.: Complete orthogonal Appell systems for spherical monogenics. Complex Anal. Oper. Theory 6, 477–480 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Legendre, A.M.: Théorie des Nombres. Firmin Didot Frères, Paris (1830)

    MATH  Google Scholar 

  19. Malonek, H.: Selected topics in hypercomplex function theory. In: Eriksson, S.-L. (ed.) Clifford Algebras and Potential Theory, Report Series vol. 7, pp. 111–150. University of Joensuu, Joensuu (2004)

  20. Qian, T.: Fourier analysis on starlike Lipschitz surfaces. J. Funct. Anal. 183, 370–412 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ruscheweyh, St, Salinas, L.: Stable functions and Vietoris’ theorem. J. Math. Anal. Appl. 291, 596–604 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shohat, J.: The relation of the classical orthogonal polynomials to the polynomials of Appell. Am. J. Math. 58, 453–464 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sloane, N.J.A. (ed.): The on-line encyclopedia of integer sequences. Published electronically at https://oeis.org

  24. Vietoris, L.: Über das Vorzeichen gewisser trigonometrischer Summen. Sitzungsber. Österr. Akad. Wiss 167, 125–135 (1958)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The work of the first and third authors was supported by Portuguese funds through the CIDMA—Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT-Fundação para a Ciência e Tecnologia”), within project PEst-OE/MAT/UI4106/2013. The work of the second author was supported by Portuguese funds through the CMAT—Centre of Mathematics and FCT within the Project UID/MAT/00013/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Irene Falcão.

Additional information

Communicated by Irene Sabadini.

Dedicated to Frank Sommen on the occasion of his 60th birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cação, I., Falcão, M.I. & Malonek, H. Hypercomplex Polynomials, Vietoris’ Rational Numbers and a Related Integer Numbers Sequence. Complex Anal. Oper. Theory 11, 1059–1076 (2017). https://doi.org/10.1007/s11785-017-0649-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11785-017-0649-5

Keywords

Mathematics Subject Classification

Navigation