Skip to main content
Log in

A coincidence point theorem and its applications to fractional differential equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

We establish a coincidence point theorem in complete metric spaces. As a consequence, we show the existence of solutions to a system of initial value problem of fractional differential equations involving Riemann–Liouville fractional derivatives. Next, we derive several coincidence point theorems for new classes of sublinear and superlinear operators, in the context of ordered Banach spaces. Finally, we apply these results to discuss the existence of positive solutions to a class of initial value problem of fractional differential equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birkhoff, G.: Extensions of Jentzsch’s theorem. Trans. Am. Math. Soc. 85(1), 219–227 (1957)

    MathSciNet  MATH  Google Scholar 

  2. Stetsenko, V.Y., Imomnazarov, B.: Existence of eigenvectors of nonlinear, not completely continuous operators. Sib. Math. J. 8(1), 109–116 (1967)

    Article  Google Scholar 

  3. Bushell, P.J.: Hilbert’s metric and positive contraction mappings in a Banach space. Arch. Ration. Mech. Anal 52(4), 330–338 (1973)

    Article  MathSciNet  Google Scholar 

  4. Potter, A.: Applications of Hilbert’s projective metric to certain classes of non-homogeneous operators. Q. J. Math. 28(2), 93–99 (1977)

    Article  MathSciNet  Google Scholar 

  5. Krause, U.: A nonlinear extension of the Birkhoff–Jentzsch theorem. J. Math. Anal. Appl. 114(2), 552–568 (1986)

    Article  MathSciNet  Google Scholar 

  6. Nussbaum, R.D., Hilbert, D.: Hilbert’s Projective Metric and Iterated Nonlinear Maps, vol. 1. American Mathematical Society, Providence (1988)

    MATH  Google Scholar 

  7. Krasnosel’skii, M.A., Vainikko, G., Zabreyko, R., Ruticki, Y.B., Stet’senko, V.V.: Approximate Solution of Operator Equations. Springer Science and Business Media, New York (2012)

    Google Scholar 

  8. Nieto, J.J.: Existence of solutions in a cone for nonlinear alternative problems. Proc. Am. Math. Soc. 94(3), 433–436 (1985)

    Article  MathSciNet  Google Scholar 

  9. Chen, Y.-Z.: Thompson’s metric and mixed monotone operators. J. Math. Anal. Appl. 177(1), 31–37 (1993)

    Article  MathSciNet  Google Scholar 

  10. Chen, Y.-Z.: A variant of the Meir–Keeler-type theorem in ordered Banach spaces. J. Math. Anal. Appl. 236(2), 585–593 (1999)

    Article  MathSciNet  Google Scholar 

  11. Chen, Y.-Z.: Continuation method for \(\alpha \)-sublinear mappings. Proc. Am. Math. Soc. 129(1), 203–210 (2001)

    Article  MathSciNet  Google Scholar 

  12. Huang, M.-J., Huang, C.-Y., Tsai, T.-M.: Applications of Hilbert’s projective metric to a class of positive nonlinear operators. Linear Algebra Appl. 413(1), 202–211 (2006)

    Article  MathSciNet  Google Scholar 

  13. Chen, Y.-Z.: The existence of a fixed point for the sum of two monotone operators. Positivity 12(4), 643–652 (2008)

    Article  MathSciNet  Google Scholar 

  14. Duan, X., Liao, A., Tang, B.: On the nonlinear matrix equation \(X-\sum _{i=1}^{m} A_i^\ast X^{\delta _i}A_i= Q\). Linear Algebra Appl. 429(1), 110–121 (2008)

    Article  MathSciNet  Google Scholar 

  15. Huang, C.-Y.: Fixed point theorems for a class of positive mixed monotone operators. Math. Nachr. 285(5–6), 659–669 (2012)

    Article  MathSciNet  Google Scholar 

  16. Berzig, M., Samet, B.: Positive solutions to periodic boundary value problems involving nonlinear operators of Meir–Keeler-type. Rend. Circ. Mat. Palermo 61(2), 279–296 (2012)

    Article  MathSciNet  Google Scholar 

  17. Khastan, A., Nieto, J.J., Rodríguez-López, R.: Schauder fixed-point theorem in semilinear spaces and its application to fractional differential equations with uncertainty. Fixed Point Theory Appl. 2014(1), 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  18. Nabil, T., Soliman, A.H.: A multidimensional fixed-point theorem and applications to Riemann–Liouville fractional differential equations. Math. Probl. Eng. 2019 (2019)

  19. Benchohra, M., Litimein, S., Nieto, J.J.: Semilinear fractional differential equations with infinite delay and non-instantaneous impulses. J. Fixed Point Theory Appl. 21(1), 21 (2019)

    Article  MathSciNet  Google Scholar 

  20. Boyd, D.W., Wong, J.S.: On nonlinear contractions. Proc. Am. Math. Soc. 20(2), 458–464 (1969)

    Article  MathSciNet  Google Scholar 

  21. Matkowski, J.: Integrable Solutions of Functional Equations. Discuss. Math., vol. 127. Polish Scientific Publishers, Warsaw (1975)

    Google Scholar 

  22. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204. Elsevier, Amsterdam (2006)

    Book  Google Scholar 

  23. Lakshmikantham, V., Guo, D.: Nonlinear Problems in Abstract Cones. Academic Press, London (1988)

    MATH  Google Scholar 

  24. Cobzaş, Ş., Rus, M.-D.: Normal cones and Thompson metric. In: Topics in Mathematical Analysis and Applications, pp. 209–258. Springer, New York (2014)

  25. Rørdam, M.: Fixed-points in the cone of traces on a \(c^{\ast }\)-algebra. Trans. Am. Math. Soc. 371(12), 8879–8906 (2019)

    Article  MathSciNet  Google Scholar 

  26. Thompson, A.C.: On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 14(3), 438–443 (1963)

    MathSciNet  MATH  Google Scholar 

  27. Berzig, M., Marwa, B.: Coincidence point theorems in ordered Banach spaces and applications. Banach J. Math. Anal. 14, 539–558 (2020)

    Article  MathSciNet  Google Scholar 

  28. Uchiyama, M.: Operator monotone functions which are defined implicitly and operator inequalities. J. Funct. Anal. 175(2), 330–347 (2000)

    Article  MathSciNet  Google Scholar 

  29. Uchiyama, M., Hasumi, M.: On some operator monotone functions. Integr. Equ. Oper. Theory 42(2), 243–251 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank an anonymous referee for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Berzig.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berzig, M., Bouali, M. A coincidence point theorem and its applications to fractional differential equations. J. Fixed Point Theory Appl. 22, 56 (2020). https://doi.org/10.1007/s11784-020-00794-5

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-020-00794-5

Mathematics Subject Classification

Keywords

Navigation