Skip to main content
Log in

\(L^p\)-solutions of a nonlinear third order differential equation and the Poincaré–Perron problem

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper we prove the well-posedness and we study the asymptotic behavior of nonoscillatory \(L^p\)-solutions for a third order nonlinear scalar differential equation. The equation consists of two parts: a linear third order with constant coefficients part and a nonlinear part represented by a polynomial of fourth order in three variables with variable coefficients. The results are obtained assuming three hypotheses: (1) the characteristic polynomial associated with the linear part has simple and real roots, (2) the coefficients of the polynomial satisfy asymptotic integral smallness conditions, and (3) the polynomial coefficients are in \(L^p([t_0,\infty [)\). These results are applied to study a fourth order linear differential equation of Poincaré type and a fourth order linear differential equation with unbounded coefficients. Moreover, we give some examples where the classical theorems cannot be applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill Book Company Inc., New York (1953)

    MATH  Google Scholar 

  2. Coddington, E.A., Levinson, N.: Theory of Ordinary Differential Equations. McGraw-Hill Book Company Inc., New York (1955)

    MATH  Google Scholar 

  3. Coppel, W.A.: Stability and Asymptotic Behavior of Differential Equations. D. C. Heath and Co., Boston (1965)

    MATH  Google Scholar 

  4. Coronel, A., Huancas, F., Pinto, M.: Asymptotic integration of a linear fourth order differential equation of Poincaré type. Electron. J. Qual. Theory Differ. Equ. 76, 1–24 (2015)

    Article  Google Scholar 

  5. Eastham, M.S.P.: The Asymptotic Solution of Linear Differential Systems: Applications of the Levinson Theorem. London Mathematical Society Monographs, vol. 4. Oxford University Press, New York (1989)

    MATH  Google Scholar 

  6. Fedoryuk, M.V.: Asymptotic Analysis: Linear Ordinary Differential Equations (Translated from the Russian by Andrew Rodick). Springer, Berlin (1993)

    Book  Google Scholar 

  7. Figueroa, P., Pinto, M.: Riccati equations and nonoscillatory solutions of third order differential equations. Dyn. Syst. Appl. 17(3–4), 459–475 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Figueroa, P., Pinto, M.: \(L^p\)-solutions of Riccati-type differential equations and asymptotics of third order linear differential equations. Dyn. Contin. Discret. Impuls. Syst. Ser. A Math. Anal. 17(4), 555–571 (2010)

    MATH  Google Scholar 

  9. Figueroa, P., Pinto, M.: Poincaré’s problem in the class of almost periodic type functions. Bull. Belg. Math. Soc. Simon Stevin 22(2), 177–198 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Harris Jr., W.A., Lutz, D.A.: On the asymptotic integration of linear differential systems. J. Math. Anal. Appl. 48(1), 1–16 (1974)

    Article  MathSciNet  Google Scholar 

  11. Harris Jr., W.A., Lutz, D.A.: A unified theory of asymptotic integration. J. Math. Anal. Appl. 57(3), 571–586 (1977)

    Article  MathSciNet  Google Scholar 

  12. Hartman, P., Wintner, A.: Asymptotic integrations of linear differential equations. Am. J. Math. 77(1), 45–86 (1955)

    Article  MathSciNet  Google Scholar 

  13. Levinson, N.: The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15(1), 111–126 (1948)

    Article  MathSciNet  Google Scholar 

  14. Perron, O.: Ber einen satz des henr Poincaré. J. Reine Angew. Math. 136, 17–37 (1909)

    MathSciNet  MATH  Google Scholar 

  15. Pietruczuk, B.: Resonance phenomenon for potentials of Wigner–von Neumann type. In: Kielanowski, P., Ali, S.T., Odesskii, A., Odzijewicz, A., Schlichenmaier, M., Voronov, T. (eds.) Geometric Methods in Physics. Trends in Mathematics, pp. 203–207. Springer, Basel (2013)

    Chapter  Google Scholar 

  16. Poincaré, H.: Sur les equations lineaires aux differentielles ordinaires et aux differences finies. Am. J. Math. 7(3), 203–258 (1885)

    Article  MathSciNet  Google Scholar 

  17. Stepin, S.A.: The wkb method and dichotomy for ordinary differential equations. Dokl. Math. 72(2), 783–786 (2005)

    MATH  Google Scholar 

  18. Stepin, S.A.: Asymptotic integration of nonoscillatory second-order differential equations. Dokl. Math. 82(2), 751–754 (2010)

    Article  MathSciNet  Google Scholar 

  19. Tunç, C.: On the stability of solutions to a certain fourth-order delay differential equation. Nonlinear Dyn. 51(1–2), 71–81 (2008)

    MathSciNet  MATH  Google Scholar 

  20. Tunç, C.: Stability and bounded of solutions to non-autonomous delay differential equations of third order. Nonlinear Dyn. 62(4), 945–953 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. Coronel, F. Huancas and L. Friz would like to thank the support of research projects at Universidad del Bío-Bío (Chile): DIUBB 172409 GI/C, DIUBB 103309 4/R, the program “Fondo de Apoyo a la Participacin a Eventos Internacionales” (FAPEI), and “Fortalecimiento del postgrado” of the project “Instalación del Plan Plurianual UBB 2016-2020”. M. Pinto thanks the support of Fondecyt project 1120709.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aníbal Coronel.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Author contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coronel, A., Friz, L., Huancas, F. et al. \(L^p\)-solutions of a nonlinear third order differential equation and the Poincaré–Perron problem. J. Fixed Point Theory Appl. 21, 3 (2019). https://doi.org/10.1007/s11784-018-0641-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0641-3

Mathematics Subject Classification

Keywords

Navigation