Skip to main content
Log in

Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we modify L-cyclic \((\alpha ,\beta )_s\)-contractions and using this contraction, we prove fixed point theorems in the setting of b-metric spaces. As an application, we discuss the existence of a unique solution to non-linear fractional differential equation,

$$\begin{aligned} ^{c}D^{\sigma }(x(t))=f(t,x(t)),\ \ \text {for all}\ \ t\in (0,1), \end{aligned}$$
(1)

with the integral boundary conditions,

$$\begin{aligned} x(0)=0,\ \ x(1)=\int _{0}^{\rho }x(r)\mathrm{d}r,\ \ \text {for all}\ \rho \in (0,1), \end{aligned}$$

where \(x\in C(\left[ 0,1\right] ,\mathbb {R})\), \(^{c}D^{\alpha }\) denotes the Caputo fractional derivative of order \(\sigma \in (1,2]\), \(f : [0,1] \times \mathbb {R}\rightarrow \mathbb {R}\) is a continuous function. Furthermore, we established existence result of a unique common solution to the system of non-linear quadratic integral equations,

$$\begin{aligned}{\left\{ \begin{array}{ll} x(t)&{}= \int _{0}^{1}H(t,\tau )f_{1}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1]; \\ x(t)&{}= \int _{0}^{1}H(t,\tau )f_{2}(\tau ,x(\tau )) \mathrm{d}\tau ,\ \text {for all}~ t\in [0,1], \end{array}\right. } \end{aligned}$$

where \(H : \left[ 0,1\right] \times \left[ 0,1\right] \rightarrow [0,\infty )\) is continuous at \(t\in \left[ 0,1\right] \) for every \(\tau \in \left[ 0,1\right] \) and measurable at \(\tau \in \left[ 0,1\right] \) for every \(t\in \left[ 0,1\right] \) and \(f_{1}, f_{2}: \left[ 0,1\right] \times \mathbb {R}\rightarrow [0,\infty )\) are continuous functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aghajani, A., Abbas, M., Roshan, J.R.: Common fixed point of generalized weak contractive mappings in partially ordered \(b\)-metric spaces. Math. Slovaca 64, 941–960 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Existence results for a system of coupled hybrid fractional differential equations. Sci. World J. 426438, 1–6 (2014)

    Google Scholar 

  3. Allahyari, R., Arab, R., Haghighi, A.S.: Fixed points of admissible almost contractive type mappings on \(b-\)metric spaces with an application to quadratic integral equations. J. Inequal. Appl. 2015, 32 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alizadeh, S., Moradlou, F., Salimi, P.: Some fixed point results for \((\alpha, \beta )-(\psi, \phi )-\)contractive mappings. Filomat 28(3), 635–647 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Anber, A., Belarbi, S., Dahmani, Z.: New existence and uniqueness results for fractional differential equations. An. Şt. Univ. Ovidius Constanţa 21(3), 33–41 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Babakhani, A.: Existence of solution for a coupled system of fractional integro-differential equations on an unbounded domain. Anal. Theory Appl. 29(1), 47–61 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Bǎleanu, D., Khan, H., Jafari, H., Khan, R.A., Alipour, M.: On existence results for solutions of coupled system of hybrid boundary value problems with hybrid conditions. Adv. Differ. Equ. 318, 1–14 (2015)

    MathSciNet  Google Scholar 

  8. Bashiri, T., Vaezpour, S.M., Park, C.: A coupled fixed point theorem and application to fractional hybrid differential problems. Fixed Point Theor. Appl. 2016, 1–11 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Unianowsk Gos. Ped. Inst. 30, 26–37 (1989)

    Google Scholar 

  10. Boriceanu, M., Bota, M., Petrusel, A.: Multivalued fractals in \(b\)-metric spaces. Central Eur. J. Math. 8(2), 367–377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Czerwik, S.: Contraction mappings in \(b\)-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)

    MathSciNet  MATH  Google Scholar 

  12. Czerwik, S.: Nonlinear set-valued contraction mappings in \(b\)-metric spaces. Atti Semin. Mat. Fisico Univ. Modena 46(2), 263–276 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Huanga, H., Denga, G., Radenovićb, S.: Chen, Zhanmei: Fixed point results for admissible mappings with application to integral equations. J. Nonlinear Sci. Appl. 9, 6260–6273 (2016)

    Article  MathSciNet  Google Scholar 

  14. Hussain, N., Dorić, D., Kadelburg, Z., Radenović, S.: Suzuki-type fixed point results in metric type spaces. Fixed Point Theory Appl. 2012, 1–12 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Isik, H., Samet, B., Vetro, C.: Cyclic admissible contraction and applications to functional equations in dynamic programming. Fixed Point Theor. Appl. 2015, 1–19 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khan, M.S., Swaleh, M., Sessa, S.: Fixed point theorems by altering distances between the points. Bull. Aust. Math. Soc. 30, 1–9 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland Mathematics Studies, vol. 204. Elsevier Science B. V., Amsterdam (2006)

  18. Kumam, P., Dung, N.V., Le Hang, V.T.: Some equivalences between cone \(b\)-metric spaces and \(b-\)metric spaces. Abstr. Appl. Anal. 2013, 1–8 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Lakzian, H., Gopal, D., Sintunavarat, W.: New fixed point results for mappings of contractive type with an application to nonlinear fractional differential equations. J. Fixed Point Theory Appl. https://doi.org/10.1007/s11784-015-0275-7

  20. Samet, B., Vetro, C., Vetro, P.: Fixed point theorems for \(\alpha -\psi -\)contractive type mappings. Nonlinear Anal. 75, 2154–2165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sintunavarat, W.: Nonlinear integral equations with new admissibility types in \(b\)-metric spaces. J. Fixed Point Theory Appl. (2015). https://doi.org/10.1007/s11784-015-0276-6

  22. Sintunavarat, W., Kumam, P.: Common fixed point theorem for a pair of weakly compatible mappings in fuzzy metric space. J. Appl. Math. 637958, 1–14 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sintunavarat, W.: Fixed point results in \(b\)-metric spaces approach to the existence of a solution for nonlinear integral equations. Rev. Real Acad. Cienc. Exactas Fisicas Nat. Ser. A Mat. 110, 585–600 (2016)

  24. Yamaod, O., Sintunavarat, W.: Fixed point theorems for \((\alpha,\beta )\)-\((\psi,\varphi )\)-contractive mapping in \(b\)-metric spaces with some numerical results and applications. J. Nonlinear Sci. Appl. 9(1), 22–34 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Yamaod, O., Sintunavarat, W., Cho, Y.J.: Existence of a common solution for a system of nonlinear integral equations via fixed point methods in \(b\)-metric spaces. Open Math. 14(1), 128–145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the editor and anonymous referees for their comments and suggestions, which helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Sarwar or Cemil Tunc.

Ethics declarations

Author contributions

All authors read and approved the final manuscript. All author contribute equally to the writing of this manuscript.

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zada, M.B., Sarwar, M. & Tunc, C. Fixed point theorems in b-metric spaces and their applications to non-linear fractional differential and integral equations. J. Fixed Point Theory Appl. 20, 25 (2018). https://doi.org/10.1007/s11784-018-0510-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0510-0

Mathematics Subject Classification

Keywords

Navigation