Skip to main content
Log in

Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study the bounded perturbation resilience of projection and contraction algorithms for solving variational inequality (VI) problems in real Hilbert spaces. Under typical and standard assumptions of monotonicity and Lipschitz continuity of the VI’s associated mapping, convergence of the perturbed projection and contraction algorithms is proved. Based on the bounded perturbed resilience of projection and contraction algorithms, we present some inertial projection and contraction algorithms. In addition, we show that the perturbed algorithms converge at the rate of O(1 / t).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alvarez, F.: Weak convergence of a relaxed and inertial hybrid projection-proximal point algorithm for maximal monotone operators in Hilbert space. SIAM J. Optim. 14(3), 773–782 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antipin, A.S.: On a method for convex programs using a symmetrical modification of the Lagrange function. Ekon. Mat. Metody 12, 1164–1173 (1976)

    Google Scholar 

  3. Attouch, H., Peypouquet, J., Redont, P.: A dynamical approach to an inertial forward–backward algorithm for convex minimization. SIAM J. Optim. 24(1), 232–256 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  5. Butnariu, D., Reich, S., Zaslavski, A.J.: Convergence to fixed points of inexact orbits of Bregman-monotone and of nonexpansive operators in Banach spaces. Fixed Point Theory Appl., pp. 11–32. Yokohama Publishers, Yokohama (2006)

    MATH  Google Scholar 

  6. Butnariu, D., Reich, S., Zaslavski, A.J.: Asymptotic behavior of inexact orbits for a class of operators in complete metric spaces. J. Appl. Anal. 13, 1–11 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Butnariu, D., Reich, S., Zaslavski, A.J.: Stable convergence theorems for infinite products and powers of nonexpansive mappings. Numer. Funct. Anal. Optim. 29, 304–323 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cai, X., Gu, G., He, B.: On the O(\(1/\)t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Censor, Y.: Weak and strong superiorization: between feasibility-seeking and minimization. An. St. Univ. Ovidius Constanta Ser. Mat. 23, 41–54 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Censor, Y., Zaslavski, A.J.: Strict Fej\(\acute{e}\)r monotonicity by superiorization of feasibility-seeking projection methods. J. Optim. Theory Appl. 165, 172–187 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Censor, Y., Davidi, R., Herman, G.T.: Perturbation resilience and superiorization of iterative algorithms. Inverse Probl. 26, 065008 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, TH.M.: Inertial projection and contraction algorithm for variational inequalities. J. Glob. Optim. https://doi.org/10.1007/s10898-017-0506-0

  13. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65(12), 2217–2226 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dong, Q.L., Yang, J.F., Yuan, H.B.: The projection and contraction algorithm for solving variational inequality problems in Hilbert spaces. J. Nonlinear Convex Anal. (to appear)

  15. Duchi, J., Shalev-Shwartz, S., Singer, Y., Chandra, T.: Efficient projections onto the \(l_1\)-ball for learning in high dimensions. In: Proceedings of the 25th International Conference on Machine Learning, Helsinki, Finland (2008)

  16. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vols. I, II. Springer, New York (2003)

  17. Garduño, E., Herman, G.T.: Superiorization of the ML-EM algorithm. IEEE Trans. Nucl. Sci. 61, 162–172 (2014)

    Article  Google Scholar 

  18. Gibali, A., Jadamba, B., Khan, A.A., Raciti, F., Winkler, B.: Gradient and extragradient methods for the elasticity imaging inverse problem using an equation error formulation: a comparative numerical study. Nonlinear Anal. Opt. Contemp. Math. 659, 65–89 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  20. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Herman, G.T., Davidi, R.: Image reconstruction from a small number of projections. Inverse Probl. 24, 045011 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Herman, G.T., Garduño, E., Davidi, R., Censor, Y.: Superiorization: an optimization heuristic for medical physics. Med. Phys. 39, 5532–5546 (2012)

    Article  Google Scholar 

  23. Khobotov, E.N.: Modification of the extragradient method for solving variational inequalities and certain optimization problems. USSR Comput. Math. Math. Phys. 27, 120–127 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  24. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mate. Metody 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Ochs, P., Brox, T., Pock, T.: iPiasco: Inertial proximal algorithm for strongly convex optimization. J. Math. Imaging Vis. 53, 171–181 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14(5), 877–898 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous referees for the thorough analysis and review, their comments and suggestions helped tremendously in improving the quality of this paper and made it suitable for publication. The first author is supported by the National Natural Science Foundation of China (No. 71602144) and Open Fund of Tianjin Key Lab for Advanced Signal Processing (No. 2016ASP-TJ01). The second author is supported by the EU FP7 IRSES program STREVCOMS (No. PIRSES-GA-2013-612669).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aviv Gibali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, QL., Gibali, A., Jiang, D. et al. Convergence of projection and contraction algorithms with outer perturbations and their applications to sparse signals recovery. J. Fixed Point Theory Appl. 20, 16 (2018). https://doi.org/10.1007/s11784-018-0501-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0501-1

Keywords

Mathematics Subject Classification

Navigation