Skip to main content
Log in

A study of normality and continuity for mixed integral equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

This paper presents a numerical method for solving a mixed Fredholm–Volterra linear integral equation of the second kind in a Banach space. Under certain conditions, the existence and uniqueness of the solution are proved, using Banach’s fixed point theorem. Using Nystrom’s method, the problem is reduced to a system of linear integral equations, whose solution is then found by the resolvent method. The ideas are interesting and this area caught the attention of many researchers, having so many applications. This paper starts with a brief introduction in the subject and then proposes a new scheme which is discussed in details. The numerical examples in Sect. 6 illustrate the applicability of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abdou, M.A.: Fredholm–Volterra integral equation and generalized potential kernel. Appl. Math. Comput. 131, 81–94 (2002)

    MathSciNet  MATH  Google Scholar 

  2. Abdou, M.A., Basseem, M.: Solution of mixed integral equation in position and time using spectral relationships. J. Assoc. Arab Univ. Basic Appl. Sci. 23, 52–56 (2017). https://doi.org/10.1016/j.jaubas.2016.05.001

  3. Abdou, M.A., Elsayed, M.A.: Legendre and Chebyshev polynomials for solving mixed integral equation. Br. J. Math. Comput. Sci. 12, 1–10 (2016)

    Article  Google Scholar 

  4. Atkinson, K.E.: The Numerical Solution of Integral Equation of the Second Kind. Cambridge Monographs on Applied and Computational Mathematics, Cambridge (1997)

  5. Akbarzadeh, A., Fu, J., Chen, Z.: Three-phase-lag heat conduction in a functionally graded hollow cylinder. Trans. Can. Soc. Mech. Eng. 38(1), 155 (2014)

    Google Scholar 

  6. András, S.: Weakly singular Volterra and Fredholm–Volterra integral equations. Stud. Univ. Babes-Bolyai Math. 48(3), 147–155 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Burton, T.A.: Volterra Integral and Differential Equations, vol. 202. Mathematics in Science and Engineering, Elsevier, Amsterdam (2005)

    Book  MATH  Google Scholar 

  8. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations, vol. 15. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  9. Chiriţă, S.: On the time differential dual-phase-lag thermoelastic model. Meccanica 52(1–2), 349–361 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations. CUP Archive, New York (1988)

    MATH  Google Scholar 

  11. El-Borai, M.M., Abdou, M.A., Basseem, M.: An analysis of two dimensional integral equations of the second kind. Le Matematiche 62, 15–41 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Golberg, M.A.: Numerical Solution of Integral Equations. Dover, New York (1990)

    Book  MATH  Google Scholar 

  13. Kovalenko, E.V.: Some approximate methods for solving integral equations of mixed problems. Provl. Math. Mech. 53, 85–92 (1989)

    MathSciNet  MATH  Google Scholar 

  14. Linz, P.: Analytical and Numerical Methods for Volterra Equations. SIAM, Philadelphia (1985)

    Book  MATH  Google Scholar 

  15. Mirzaee, F., Hadadiyan, E.: Approximate solutions for mixed nonlinear Volterra–Fredholm type integral equations via modified block-pulse functions. J. Assoc. Arab Univ. Basic Appl. Sci. 12, 65–73 (2012)

    MATH  Google Scholar 

  16. Micula, S.: On some iterative numerical methods for a Volterra functional integral equation of the second kind. J. Fixed Point Theory Appl. 19(3), 1815–1824 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Micula, S.: An iterative numerical method for Fredholm–Volterra integral equations of the second kind. Appl. Math. Comput. 270, 935–942 (2015). https://doi.org/10.1016/j.amc.2015.08.110

  18. Rokhlin, V.: Rapid solution of integral equations of classical potential theory. J. Comput. Phys. 60, 187–207 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wang, W.: A new mechanical algorithm for solving the second kind of Fredholm integral equation. Appl. Math. Comput. 172, 946–962 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Zemyan, S.M.: The Classical Theory of Integral Equations, Fredholm Integral Equations of the Second Kind (General Kernel), pp. 31–84. Birkhauser, Boston (2012)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referees and the editor for the valuable suggestions to improve the writing of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abdel-Aty.

Additional information

To my boss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, M.A., Nasr, M.E. & Abdel-Aty, M.A. A study of normality and continuity for mixed integral equations. J. Fixed Point Theory Appl. 20, 5 (2018). https://doi.org/10.1007/s11784-018-0490-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11784-018-0490-0

Keywords

Mathematics Subject Classification

Navigation