Skip to main content
Log in

Extended Newton-type method and its convergence analysis for nonsmooth generalized equations

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Let X and Y be Banach spaces and \(\Omega \) be an open subset of X. Suppose that \(f:{\Omega \subseteq X}\rightarrow {Y}\) is a single-valued function which is nonsmooth and it has point based approximations on \(\Omega \) and \(F:X\rightrightarrows 2^Y\) is a set-valued mapping with closed graph. An extended Newton-type method is introduced in the present paper for solving the nonsmooth generalized equation \(0\in {f(x)+F(x)}\). Semilocal and local convergence of this method are analyzed based on the concept of point-based approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Robinson, S.M.: Generalized equations and their solutions, Part I: Basic Theory. Math. Program. Study 10, 128–141 (1979)

    Article  MATH  Google Scholar 

  2. Robinson, S.M.: Generalized equations and their solutions, Part II: Applications to nonlinear programming. Math. Program. Study 19, 200–221 (1982)

    Article  MATH  Google Scholar 

  3. Ferris, M.C., Pang, J.S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Argyros, I.K.: Advances in the Efficiency of Computational Methods and Applications. World Scientific, River Edge (2000)

    Book  MATH  Google Scholar 

  5. Kantorovich, L.V., Akilov, G.P.: Functional Analysis in Normed Spaces. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  6. Robinson, S.M.: Newton’s method for a class of nonsmooth functions. Set Valued Anal. 2, 291–305 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Argyros, I.K.: On a nonsmooth version of Newton’s method based on Hölderian assumptions. Int. J. Comput. Math. 84(12), 1747–1756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dontchev, A.L.: Local convergence of the Newton method for generalized equation. C. R. A. S Paris Ser. I 322, 327–331 (1996)

    MathSciNet  MATH  Google Scholar 

  9. Dontchev, A.L.: Local analysis of a Newton-type method based on partial linearization. Lect. Appl. Math. 32, 295–306 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Rashid, M.H., Yu, S.H., Li, C., Wu, S.Y.: Convergence analysis of the Gauss–Newton method for Lipschitz-like mappings. J. Optim. Theory Appl. 158(1), 216–233 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dedieu, J.P., Shub, M.: Newton’s method for overdetermined systems of equations. Math. Comput. 69, 1099–1115 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. He, J.S., Wang, J.H., Li, C.: Newton’s method for underdetemined systems of equations under the modified \(\gamma \)-condition. Numer. Funct. Anal. Optim. 28, 663–679 (2007)

    Article  MathSciNet  Google Scholar 

  13. Xu, X.B., Li, C.: Convergence criterion of Newton’s method for singular systems with constant rank derivatives. J. Math. Anal. Appl. 345, 689–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Li, C., Ng, K.F.: Majorizing functions and convergence of the Gauss Newton method for convex composite optimization. SIAM J. Optim. 18, 613–642 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Aubin, J.P.: Lipschitz behavior of solutions to convex minimization problems. Math. Oper. Res. 9, 87–111 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  16. Haliout, S., Pietrus, A.: A semilocal convergence of the secant-type method for solving a generalised equations. Possitivity 10, 673–700 (2006)

    Google Scholar 

  17. Pietrus, A.: Does Newton’s method for set-valued maps converges uniformly in mild differentiability context? Rev. Colomb. Mat. 32, 49–56 (2000)

    MathSciNet  MATH  Google Scholar 

  18. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Boston (1990)

    MATH  Google Scholar 

  19. Mordukhovich, B.S.: Sensitivity analysis in nonsmooth optimization. In: Field D.A., Komkov V. (eds.) Theoretical Aspects of Industrial Design, volume 58 of Proceedings in Applied Mathematics, pp. 32–46. SIAM, Philadelphia (1992)

  20. Penot, J.P.: Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dontchev, A.L., Hager, W.W.: An inverse mapping theorem for set-valued maps. Proc. Am. Math. Soc. 121, 481–498 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dontchev, A.L.: Uniform convergence of the Newton method for Aubin continuous maps. Serdica Math. J. 22, 385–398 (1996)

    MathSciNet  MATH  Google Scholar 

  23. Robinson, S.M.: Extension of Newton’s method to nonlinear functions with values in a cone. Numer. Math. 19, 341–347 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ortega, J.M.: The Newton–Kantorovich theorem. Am. Math. Mon. 75, 658–660 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ostrowski, A.M.: On Newton’s Method in Banach Spaces. Defense Technical Information Center, Basel University, Mathematics Institute, Switzerland (1972)

    Google Scholar 

  26. Rall, L.B., Tapia, R.A.: The Kantorovich theorem and error estimates for Newton’s method. Technical Summary Report No. 1043. Mathematics Research Center, University of Wisconsin (1970)

  27. Josephy, N.H.: Newton’s Method for Generalized Equations. Technical Summary Report No. 1965. Mathematics Research Center, University of Wisconsin-Madison, June, 1979

  28. Robinson, S.M.: Normal maps induced by linear transformations. Math. Oper. Res. 17, 691–714 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ralph, D.: A new proof of Robinson’s homeomorphism theorem for PL-normal maps. Linear Algebra Appl. 178, 249–260 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ralph, D.: On branching numbers of normal manifolds. Nonlinear Anal. Theory Methods Appl. 22(8), 1041–1050 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Rashid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashid, M.H. Extended Newton-type method and its convergence analysis for nonsmooth generalized equations. J. Fixed Point Theory Appl. 19, 1295–1313 (2017). https://doi.org/10.1007/s11784-017-0415-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-017-0415-3

Keywords

Mathematics Subject Classification

Navigation