Skip to main content
Log in

Coincidence invariants and higher Reidemeister traces

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

The Lefschetz number and fixed point index can be thought of as two different descriptions of the same invariant. The Lefschetz number is algebraic and defined using homology. The index is defined more directly from the topology and is a stable homotopy class. Both the Lefschetz number and index admit generalizations to coincidences and the comparison of these invariants retains its central role. In this paper, we show that the identification of the Lefschetz number and index using formal properties of the symmetric monoidal trace extends to coincidence invariants. This perspective on the coincidence index and Lefschetz number also suggests difficulties for generalizations to a coincidence Reidemeister trace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Crabb M. C.: The homotopy coincidence index. J. Fixed Point Theory Appl. 7, 1–32 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Crabb and I. James, Fibrewise Homotopy Theory. Springer Monographs in Mathematics, SpringerVerlag, London, 1998.

  3. A. Dold and D. Puppe, Duality, trace, and transfer. In: Proceedings of the International Conference on Geometric Topology (Warsaw, 1978), PWN, Warsaw, 1980, 81–102.

  4. F. B. Fuller, The homotopy theory of coincidences. Ann. of Math. (2) 59 (1954), 219–226.

  5. Gonçalves D. L.: Coincidence theory for maps from a complex into a manifold. Topology Appl. 92, 63–77 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gonçalves D., Jezierski J., Wong P.: Obstruction theory and coincidences in positive codimension. Acta Math. Sin. (Engl. Ser.) 22, 1591–1602 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Husseini S. Y.: Generalized Lefschetz numbers. Trans. Amer. Math. Soc. 272, 247–274 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Joyal A., Street R.: The geometry of tensor calculus. I. Adv. Math. 88, 55–112 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Klein J. R., Williams E. B.: Homotopical intersection theory. I. Geom. Topol. 11, 939–977 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. U. Koschorke, Selfcoincidences in higher codimensions. J. Reine Angew. Math. 576 (2004), 1–10.

  11. U. Koschorke, Geometric and homotopy theoretic methods in Nielsen coincidence theory. Fixed Point Theory Appl. 2006 (2006), Art. ID 84093, 15 pages.

  12. Koschorke U.: Nielsen coincidence theory in arbitrary codimensions. J. Reine Angew. Math. 598, 211–236 (2006)

    MathSciNet  MATH  Google Scholar 

  13. Lefschetz S.: Intersections and transformations of complexes and manifolds. Trans. Amer. Math. Soc. 28, 1–49 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  14. L. G. Lewis, Jr., J. P. May, M. Steinberger and J. E. McClure, Equivariant Stable Homotopy Theory. Lecture Notes in Math. 1213, Springer-Verlag, Berlin, 1986.

  15. J. P. May and J. Sigurdsson, Parametrized Homotopy Theory. Math. Surveys Monogr. 132, American Mathematical Society, Providence, RI, 2006.

  16. K. Ponto, Fixed point theory and trace for bicategories. Astérisque, No. 333, 2010.

  17. Ponto K., Shulman M.: Duality and trace in symmetric monoidal categories. Expo. Math. 32, 248–273 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Ponto and M. Shulman, Shadows and traces in bicategories. J. Homotopy Relat. Struct. 8 (2013), 151–200.

  19. K. Ponto and M. Shulman, The multiplicativity of fixed point invariants. Algebr. Geom. Topol. 14 (2014), 1275–1306.

  20. Saveliev P.: A Lefschetz-type coincidence theorem. Fund. Math. 162, 65–89 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Saveliev P.: Lefschetz coincidence theory for maps between spaces of different dimensions. Topology Appl. 116, 137–152 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schirmer H.: Mindestzahlen von Koinzidenzpunkten. J. Reine Angew. Math. 194, 21–39 (1955)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Ponto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponto, K. Coincidence invariants and higher Reidemeister traces. J. Fixed Point Theory Appl. 18, 147–165 (2016). https://doi.org/10.1007/s11784-015-0269-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0269-5

Mathematics Subject Classification

Keywords

Navigation