Skip to main content
Log in

On primal regularity estimates for single-valued mappings

  • Published:
Journal of Fixed Point Theory and Applications Aims and scope Submit manuscript

Abstract

Based on a primal regularity criterion we provide lower bounds for the regularity modulus of a nonlinear single-valued mapping F from a Banach space X into another Banach space Y . We focus on the case when F is defined on a proper (closed convex) subset of X only rather than on the whole of X. Three possible ways of approximating F around the reference point are considered. First, we use a tangential approximation by set-valued mappings associated with the Bouligand’s tangent cone to the graph of F. Then we move on to approximations by positively homogeneous set-valued mappings whose graphs contain the graph of F, for example, by the strict prederivative. Finally, we use an approximation by bunches of continuous linear operators. In the first two cases finding approximating objects is relatively easy while in the third case the approximating object is very convenient to work with. On examples, we illustrate that these approaches are different and neither of them implies the other, unless the spaces in question are finite dimensional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. R. Akhmerov, M. I. Kamenskii, A. S. Potapova, A. E. Rodkina and B. N. Sadovskii, Measure of Noncompactness and Condensing Operators. Birkhüser, Basel, 1992.

  2. J.-P. Aubin, Contingent derivatives of set-valued maps and existence of solutions to nonlinear inclusions and differential inclusions. In: MathematicalAnalysis and Applications, Part A, Adv. in Math. Suppl. Stud. 7, Academic Press, New York, 1981, 159–229.

  3. J. P. Aubin and H. Frankowska, Set-Valued Analysis. Systems & Control: Foundations & Applications 2, Birkhäuser Boston, Boston, MA, 1990.

  4. Azé D.: A unified theory for metric regularity of multifunctions. J. Convex Anal. 13, 225–252 (2006)

    MATH  MathSciNet  Google Scholar 

  5. J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps. J. Math. Anal. Appl. 134 (1988), 441–459.

  6. R. Cibulka and M. Fabian, A note on Robinson-Ursescu and Lyusternik-Graves theorem. Math. Program. 139 (2013), 89–101.

  7. E. De Giorgi, A. Marino and M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 68 (1980), 180–187.

  8. R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces. Pitman Monographs and Surveys in Pure and Applied Mathematics 64, Longman Scientific & Technical, Harlow, 1993.

  9. P. H. Dien, Some results on locally Lipschitzian mappings. Acta Math. Vietnam. 6 (1981), 97–105.

  10. A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskii, Lyusternik’s theorem and the theory of extrema. Russian Math. Surveys 35 (1980), 11–51.

  11. A. L. Dontchev, M. Quincampoix and N. Zlateva, Aubin criterion for metric regularity. J. Convex Anal. 13 (2006), 281–297.

  12. A. L. Dontchev and R. T. Rockafellar, Implicit Functions and Solution Mappings. Springer Monographs in Mathematics, Springer, Dordrecht, 2009.

  13. N. Dunford and J. T. Schwartz, Linear Operators. I. General Theory. Interscience Publishers, New York, 1958.

  14. M. Fabian, P. Habala, P. Hájek, V. Montesinos and V. Zizler, Banach Space Theory: The Basis for Linear and Nonlinear Analysis. CMS Books Math., Springer, New York, 2011.

  15. M. Fabian and D. Preiss, A generalization of the interior mapping theorem of Clarke and Pourciau. Comment. Math. Univ. Carolin. 28 (1987), 311–324.

  16. I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem, with application to Nash equilibrium points. Proc. Amer. Math. Soc. 3 (1952), 170–174.

  17. A. Granas and J. Dugunji, Fixed Point Theory. Springer, New York, 2003.

  18. Graves L. M.: Some mapping theorems. Duke Math. J. 17, 111–114 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. D. Ioffe, Nonsmooth Analysis: Differential calculus of nondifferentiable mappings. Trans. Amer. Math. Soc. 266 (1981), 1–56.

  20. A. D. Ioffe, On the local surjection property. Nonlinear Anal. 11 (1987), 565–592.

  21. A. D. Ioffe, Metric regularity and subdifferential calculus. Russian Math. Surveys 55 (2000), 501–558.

  22. A. D. Ioffe, Regularity on a fixed set. SIAM J. Optim. 21 (2011), 1345–1370.

  23. A. D. Ioffe, Separable reduction of metric regularity properties. In: Constructive Nonsmooth Analysis and Related Topics, V. F. Demyanov, P. M. Pardalos and M. Batsin, eds., Springer Optim. Appl. 87, Springer, New York, 2013, 25–37.

  24. A. D. Ioffe, Metric regularity, fixed points and some associated problems of variational analysis. J. Fixed Point Theory Appl. 15 (2014), 67–99.

  25. B. S. Mordukhovich, Variational Analysis and Generalized Differentiation. I. Grundlehren Math. Wiss. 300, Springer, Berlin, 2006.

  26. Z. Páles, Linear selections for set-valued functions and extensions of bilinear forms. Arch. Math. (Basel) 62 (1994), 427–432.

  27. Z. Páles, Inverse and implicit function theorems for nonsmooth maps in Banach spaces. J. Math. Anal. Appl. 209 (1997), 202–220.

  28. Z. Páles and V. Zeidan, Infinite dimensional Clarke generalized Jacobian. J. Convex Anal. 14 (2007), 433–454.

  29. Penot J.-P.: Metric regularity, openness and Lipschitzian behavior of multifunctions. Nonlinear Anal. 13, 629–643 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. J.-P. Penot, Calculus without Derivatives. Grad. Texts in Math. 266, Springer, New York, 2013.

  31. V. Pták, A quantitative refinement of the closed graph theorem. Czechoslovak Math. J. 24 (1974), 503–506.

  32. K. Sh. Tsiskaridze, Extremal problems in Banach spaces. In: Nekotorye Voprosy Matematicheskoy Theorii Optimalnogo Upravleniya (Some Problems of the Mathematical Theory of Optimal Control), Inst. Appl. Math., Tbilisi State Univ. 1975 (in Russian).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander D. Ioffe.

Additional information

To Andrzej Granas en tout amitié et estime

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cibulka, R., Fabian, M. & Ioffe, A.D. On primal regularity estimates for single-valued mappings. J. Fixed Point Theory Appl. 17, 187–208 (2015). https://doi.org/10.1007/s11784-015-0240-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11784-015-0240-5

Mathematics Subject Classification

Keywords

Navigation