Skip to main content
Log in

Comparative analysis of DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) on unraveling dimethoate degraders

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Microorganisms are crucial in the bioremediation of organophosphorus pesticides. However, most functional microorganisms (> 99%) are yet to be cultivated. This study applied two cultivation-independent approaches, DNA-SIP and magnetic-nanoparticle mediated isolation (MMI), to identify the functional microorganisms in degrading dimethoate in agricultural soils. MMI identified five dimethoate degraders: Pseudomonas, Bacillus, Ramlibacter, Arthrobacter, and Rhodococcus, whereas DNA-SIP identified three dimethoate degraders: Ramlibacter, Arthrobacter, and Rhodococcus. Also, MMI showed higher resolution than DNA-SIP in identifying functional microorganisms. Two organic phosphohydrolase (OPH) genes: ophC2 and ophB, were involved in dimethoate metabolism, as revealed by DNA-SIP and MMI. The degradation products of dimethoate include omethoate, O,O,S-trimethyl thiophosphorothioate, N-methyl-2-sulfanylacetamide, O,O-diethyl S-hydrogen phosphorodithioate, O,O,O-trimethyl thiophosphate, O,O,S-trimethyl thiophosphorodithioate, and O,O,O-trimethyl phosphoric. This study emphasizes the feasibility of using SIP and MMI to explore the functional dimethoate degraders, expanding our knowledge of microbial resources with cultivation-independent approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambreen S, Yasmin A, Aziz S (2020). Isolation and characterization of organophosphorus phosphatases from Bacillus thuringiensis MB497 capable of degrading Chlorpyrifos Triazophos and Dimethoate. Heliyon, 6(7): e04221

    Article  Google Scholar 

  • Aswathi A, Pandey A, Madhavan A, Sukumaran R K (2021). Chlorpyrifos induced proteome remodelling of Pseudomonas nitroreducens AR-3 potentially aid efficient degradation of the pesticide. Environmental Technology & Innovation, 21: 101307

    Article  CAS  Google Scholar 

  • Bigley A N, Raushel F M (2013). Catalytic mechanisms for phosphotriesterases. Biochimica et Biophysica Acta. Proteins and Proteomics, 1834(1): 443–453

    Article  CAS  Google Scholar 

  • Bouchard M F, Chevrier J, Harley K G, Kogut K, Vedar M, Calderon N, Trujillo C, Johnson C, Bradman A, Barr D B, et al. (2011). Prenatal exposure to organophosphate pesticides and IQ in 7-year-old children. Environmental Health Perspectives, 119(8): 1189–1195

    Article  CAS  Google Scholar 

  • Buratti F, Testai E (2007). Evidences for CYP3A4 autoactivation in the desulfuration of dimethoate by the human liver. Toxicology, 241(1–2): 33–46

    Article  CAS  Google Scholar 

  • Chen K, Liu Z, Wang X, Yu C, Ye J, Yu C, Wang F, Shen C (2021). Enhancement of perchloroethene dechlorination by a mixed dechlorinating culture via magnetic nanoparticle-mediated isolation method. Science of the Total Environment, 786: 147421

    Article  CAS  Google Scholar 

  • Cupples A M, Sims G K (2007). Identification of in situ 2,4-dichlorophenoxyacetic acid-degrading soil microorganisms using DNA-stable isotope probing. Soil Biology & Biochemistry, 39(1): 232–238

    Article  CAS  Google Scholar 

  • DebMandal M, Mandal S, Pal N K, Aich A (2008). Potential metabolites of dimethoate produced by bacterial degradation. World Journal of Microbiology & Biotechnology, 24(1): 69–72

    Article  CAS  Google Scholar 

  • Dumont M G, Murrell J C (2005). Stable isotope probing-linking microbial identity to function. Nature Reviews. Microbiology, 3(6): 499–504

    CAS  Google Scholar 

  • Feng L, Jiang X, Huang Y, Wen D, Fu T, Fu R (2021). Petroleum hydrocarbon-contaminated soil bioremediation assisted by isolated bacterial consortium and sophorolipid. Environmental Pollution, 273: 116476

    Article  CAS  Google Scholar 

  • Feng Y C, Racke K D, Bollag J M (1997). Isolation and characterization of a chlorinated-pyridinol-degrading bacterium. Applied and Environmental Microbiology, 63(10): 4096–4098

    Article  CAS  Google Scholar 

  • Ishag A, Abdelbagi A O, Hammad A, Elsheikh E, Elsaid O E, Hur J H, Laing M (2016). Biodegradation of chlorpyrifos malathion & dimethoate by three strains of bacteria isolated from pesticides polluted soils in the Sudan. Journal of Agricultural and Food Chemistry, 64(45): 8491–8498

    Article  CAS  Google Scholar 

  • Jiang B, Chen Y, Xing Y, Lian L, Shen Y, Zhang B, Zhang H, Sun G, Li J, Wang X, Zhang D (2022). Negative correlations between cultivable and active-yet-uncultivable pyrene degraders explain the postponed bioaugmentation. Journal of Hazardous Materials, 423 (Pt B): 127189

    Article  CAS  Google Scholar 

  • Jiang B, Jin N, Xing Y, Su Y, Zhang D (2018). Unraveling uncultivable pesticide degraders via stable isotope probing (SIP). Critical Reviews in Biotechnology, 38(7): 1025–1048

    Article  CAS  Google Scholar 

  • Jiang L, Song M, Luo C, Zhang D, Zhang G (2015). Novel phenanthrene-degrading bacteria identified by DNA-stable isotope probing. PLoS One, 10(6): e0130846

    Article  Google Scholar 

  • Li J, Luo C, Song M, Dai Q, Jiang L, Zhang D, Zhang G (2017a). Biodegradation of phenanthrene in polycyclic aromatic hydrocarbon-contaminated wastewater revealed by coupling cultivation-dependent and -independent approaches. Environmental Science & Technology, 51(6): 3391–3401

    Article  CAS  Google Scholar 

  • Li J, Luo C, Zhang G, Zhang D (2018). Coupling magnetic-nanoparticle mediated isolation (MMI) and stable isotope probing (SIP) for identifying and isolating the active microbes involved in phenanthrene degradation in wastewater with higher resolution and accuracy. Water Research, 144: 226–234

    Article  CAS  Google Scholar 

  • Li J, Zhang D, Song M, Jiang L, Wang Y, Luo C, Zhang G (2017b). Novel bacteria capable of degrading phenanthrene in activated sludge revealed by stable-isotope probing coupled with high-throughput sequencing. Biodegradation, 28(5–6): 423–436

    Article  Google Scholar 

  • Li R, Zheng J, Wang R, Song Y, Chen Q, Yang X, Li S, Jiang J (2010). Biochemical degradation pathway of dimethoate by Paracoccus sp. Lgjj-3 isolated from treatment wastewater. International Biodeterioration & Biodegradation, 64(1): 51–57

    Article  CAS  Google Scholar 

  • Lian L, Jiang B, Xing Y, Zhang N (2021). Identification of photodegradation product of organophosphorus pesticides and elucidation of transformation mechanism under simulated sunlight irradiation. Ecotoxicology and Environmental Safety, 224: 112655

    Article  CAS  Google Scholar 

  • Lian L, Xing Y, Zhang N, Jiang B (2022). Identification of chlorpyrifos-degrading microorganisms in farmland soils via cultivation-independent and -dependent approaches. Environmental Science. Processes & Impacts, 24(7): 1050–1059

    Article  CAS  Google Scholar 

  • Liang J, Gao S, Wu Z, Rijnaarts H H M, Grotenhuis T (2021). DNA-SIP identification of phenanthrene-degrading bacteria undergoing bioaugmentation and natural attenuation in petroleum-contaminated soil. Chemosphere, 266: 128984

    Article  CAS  Google Scholar 

  • Liu T, Xu S, Lu S, Qin P, Bi B, Ding H, Liu Y, Guo X, Liu X (2019). A review on removal of organophosphorus pesticides in constructed wetland: performance, mechanism and influencing factors. Science of the Total Environment, 651: 2247–2268

    Article  CAS  Google Scholar 

  • Maggi F, Tang F, Black A J, Marks G B, Mcbratney A (2021). The pesticide health risk index: an application to the world’s countries. Science of the Total Environment, 801: 149731

    Article  CAS  Google Scholar 

  • Pan X, Dong F, Wu X, Xu J, Liu X, Zheng Y (2019). Progress of the discovery, application, and control technologies of chemical pesticides in china. Journal of Integrative Agriculture, 18(4): 840–853

    Article  CAS  Google Scholar 

  • Rolando L, Grenni P, Rauseo J, Pescatore T, Patrolecco L, Garbini G L, Visca A, Barra Caracciolo A (2020). Isolation and characterization in a soil conditioned with foaming agents of a bacterial consortium able to degrade sodium lauryl ether sulfate. Frontiers in Microbiology, 11: 1542

    Article  Google Scholar 

  • Sahin C, Karpuzcu M E (2020). Mitigation of organophosphate pesticide pollution in agricultural watersheds. Science of the Total Environment, 710: 136261

    Article  CAS  Google Scholar 

  • Shen Y, Jiang B, Xing Y (2021). Recent advances in the application of magnetic Fe3O4 nanomaterials for the removal of emerging contaminants. Environmental Science and Pollution Research International, 28(7): 7599–7620

    Article  CAS  Google Scholar 

  • Singh B, Walker A, Wright D (2006). Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: influence of different environmental conditions. Soil Biology & Biochemistry, 38(9): 2682–2693

    Article  CAS  Google Scholar 

  • Singh B K, Walker A (2006). Microbial degradation of organophos-phorus compounds. FEMS Microbiology Reviews, 30(3): 428–471

    Article  CAS  Google Scholar 

  • Teng T, Liang J, Wu Z (2021). Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. Science of the Total Environment, 800: 149485

    Article  CAS  Google Scholar 

  • Thomas C M, Nielsen K M (2005). Mechanisms of, and barriers to, horizontal gene transfer between bacteria. Nature Reviews. Microbiology, 3(9): 711–721

    CAS  Google Scholar 

  • Wang B, Teng Y, Yao H, Christie P (2021). Detection of functional microorganisms in benzene [a] pyrene-contaminated soils using DNA-SIP technology. Journal of Hazardous Materials, 407: 124788

    Article  CAS  Google Scholar 

  • Wang X, Zhao X, Li H, Jia J, Liu Y, Ejenavi O, Ding A, Sun Y, Zhang D (2016). Separating and characterizing functional alkane degraders from crude-oil-contaminated sites via magnetic nanoparticle-mediated isolation. Research in Microbiology, 167(9–10): 731–744

    Article  CAS  Google Scholar 

  • Warhurst A M, Fewson C A (1994). Biotransformations catalyzed by the genus Rhodococcus. Critical Reviews in Biotechnology, 14(1): 29–73

    Article  CAS  Google Scholar 

  • Yu J, Bian Z, Tian X, Zhang J, Zhang R, Zheng H (2018). Atrazine and its metabolites in surface and well waters in rural area and its human and ecotoxicological risk assessment of Henan Province, China. Human and Ecological Risk Assessment, 24(1): 1–13

    Article  Google Scholar 

  • Zhang D, Berry J P, Zhu D, Wang Y, Chen Y, Jiang B, Huang S, Langford H, Li G, Davison P A, et al. (2015). Magnetic nanoparticle-mediated isolation of functional bacteria in a complex microbial community. ISME Journal, 9(3): 603–614

    Article  CAS  Google Scholar 

  • Zhao X, Li H, Ding A, Zhou G, Sun Y, Zhang D (2016). Preparing and characterizing Fe3O4@cellulose nanocomposites for effective isolation of cellulose-decomposing microorganisms. Materials Letters, 163: 154–157

    Article  CAS  Google Scholar 

  • Zhou J, Li X, Jiang Y, Wu Y, Chen J, Hu F, Li H (2011). Combined effects of bacterial-feeding nematodes and prometryne on the soil microbial activity. Journal of Hazardous Materials, 192(3): 1243–1249

    Article  CAS  Google Scholar 

  • Zhu F, Zhu C, Doyle E, Liu H, Zhou D, Gao J (2018). Fate of di(2-ethylhexyl) phthalate in different soils and associated bacterial community changes. Science of the Total Environment, 637–638: 460–469

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Nos. 42177359 and 41807119), the Natural Science Foundation of Beijing (No. 8212030), the Fundamental Research Funds for the Central Universities (Nos. FRF-TP-20-010A3 and FRF-IDRY-22-001), and the Open Fund of National Engineering Laboratory for Site Remediation Technologies (No. NEL-SRT201907).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Xing or Bo Jiang.

Ethics declarations

Conflict of Interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Highlights

• Dimethoate degraders were identified via MMI and DNA-SIP.

• MMI identified Pseudomonas, Bacillus, Ramlibacter, Arthrobacter, and Rhodococcus.

• DNA-SIP identified Ramlibacter, Rhodococcus and Arthrobacter.

• Both ophB and ophC2 were involved in dimethoate metabolism.

• MMI shows higher resolution than DNA-SIP in identifying functional microbes.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, L., Xing, Y., Zhang, D. et al. Comparative analysis of DNA-SIP and magnetic-nanoparticle mediated isolation (MMI) on unraveling dimethoate degraders. Front. Environ. Sci. Eng. 18, 5 (2024). https://doi.org/10.1007/s11783-024-1765-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-024-1765-x

Keywords

Navigation