Skip to main content
Log in

Visible light induces bacteria to produce superoxide for manganese oxidation

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Manganese oxides are widely distributed in soils and sediments, affecting the migration and transformation of heavy metals and organic pollutants. The microbial conversion of soluble Mn(II) into insoluble Mn(III/IV) oxides is considered to be the initial source of manganese oxides in the environment; however, whether this process is related to a physiological role remains unclear. Here, we explored the microbial manganese oxidation process under visible light by using coastal surface seawater microorganisms. Visible light greatly promotes the oxidation rate of Mn(II), and the average rate reaches 64 µmol/(L·d). The generated manganese oxides were then conducive to Mn(II) oxidation, thus the rapid manganese oxidation was the result of the combined action of biotic and abiotic, and biological function accounts for 88 % ± 4 %. Extracellular superoxide produced by microorganisms induced by visible light is the decisive factor for the rapid manganese oxidation in our study. But the production of these superoxides does not require the presence of Mn(II) ions, the Mn(II) oxidation process was more like an unintentional side reaction, which did not affect the growth of microorganisms. More than 70 % of heterotrophic microorganisms in nature are capable of producing superoxide, based on the oxidizing properties of free radicals, all these bacteria can participate in the geochemical cycle of manganese. What’s more, the superoxide oxidation pathway might be a significant natural source of manganese oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andeer P F, Learman D R, McIlvin M, Dunn J A, Hansel C M (2015). Extracellular haem peroxidases mediate Mn(II) oxidation in a marine Roseobacter bacterium via superoxide production. Environmental Microbiology, 17(10): 3925–3936

    Article  CAS  Google Scholar 

  • Anderson C R, Johnson H A, Caputo N, Davis R E, Torpey J W, Tebo B M (2009). Mn(II) oxidation is catalyzed by heme peroxidases in “Aurantimsnas mangansxydans” strain SI85-9A1 and Erythrobacter sp. strain SD-21. Applied and Environmental Microbiology, 75(12): 4130–4138

    Article  CAS  Google Scholar 

  • Bender M L, Klinkhammer G P, Spencer D W (1977). Manganese in seawater and the marine manganese balance. Deep-Sea Research, 24(9): 799–812

    Article  CAS  Google Scholar 

  • Cabiscol E, Tamarit J, Ros J (2000). Oxidative stress in bacteria and protein damage by reactive oxygen species. International Microbiology, 3(1): 3–8

    CAS  Google Scholar 

  • Cabrol L, Quéméneur M, Misson B (2017). Inhibitory effects of sodium azide on microbial growth in experimental resuspension of marine sediment. Journal of Microbiological Methods, 133: 62–65

    Article  CAS  Google Scholar 

  • Carmichael S K, Bräuer S L (2015). Microbial diversity and manganese cycling: a review of manganese oxidizing microbial cave communities. In: Summers Engel A, ed. Microbial Life of Cave Systems. Berlin: De Gruyter

    Google Scholar 

  • Cebrián G, Condón S, Mañas P (2017). Physiology of the inactivation of vegetative bacteria by thermal treatments: mode of action, influence of environmental factors and inactivation kinetics. Foods, 6(12): 107

    Article  Google Scholar 

  • Cui H, Li B, Li Z, Li X, Xu S (2018). Z-scheme based CdS/CdWO4 heterojunction visible light photocatalyst for dye degradation and hydrogen evolution. Applied Surface Science, 455: 831–840

    Article  CAS  Google Scholar 

  • Diaz J M, Hansel C M, Voelker B M, Mendes C M, Andeer P F, Zhang T (2013). Widespread production of extracellular superoxide by heterotrophic bacteria. Science, 340(6137): 1223–1226

    Article  CAS  Google Scholar 

  • Ding R, Yan W, Wu Y, Xiao Y, Gang H, Wang S, Chen L, Zhao F (2018). Light-excited photoelectrons coupled with bio-photocatalysis enhanced the degradation efficiency of oxytetracycline. Water Research, 143: 589–598

    Article  CAS  Google Scholar 

  • Duckworth O W, Sposito G (2005). Siderophore-manganese(III) interactions. I. Air-oxidation of manganese(ll) promoted by desferrioxamine B. Environmental Science & Technology, 39(16): 6037–6044

    Article  CAS  Google Scholar 

  • Forrez I, Carballa M, Verbeken K, Vanhaecke L, Schlüsener M, Ternes T, Boon N, Verstraete W (2010). Diclofenac oxidation by biogenic manganese oxides. Environmental Science & Technology, 44(9): 3449–3454

    Article  CAS  Google Scholar 

  • Geszvain K, Smesrud L, Tebo B M (2016). Identification of a third Mn (II) oxidase enzyme in Pseudomonas putida GB-1. Applied and Environmental Microbiology, 82(13): 3774–3782

    Article  CAS  Google Scholar 

  • Halstead F D, Thwaite J E, Burt R, Laws T R, Raguse M, Moeller R, Webber M A, Oppenheim B A (2016). Antibacterial activity of blue light against nosocomial wound pathogens growing planktonically and as mature biofilms. Applied and Environmental Microbiology, 82(13): 4006–4016

    Article  CAS  Google Scholar 

  • Hansard S P, Easter H D, Voelker B M (2011). Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. Environmental Science & Technology, 45(7): 2811–2817

    Article  CAS  Google Scholar 

  • Hansel C M, Diaz J M (2021). Production of extracellular reactive oxygen species by marine biota. Annual Review of Marine Science, 13(1): 177–200

    Article  Google Scholar 

  • Hansel C M, Zeiner C A, Santelli C M, Webb S M (2012). Mn(II) oxidation by an ascomycete fungus is linked to superoxide production during asexual reproduction. Proceedings of the National Academy of Sciences of the United States of America, 109(31): 12621–12625

    Article  CAS  Google Scholar 

  • Hayyan M, Hashim M A, AlNashef I M (2016). Superoxide ion: generation and chemical implications. Chemical Reviews, 116(5): 3029–3085

    Article  CAS  Google Scholar 

  • Hou H, Liu H, Gao F, Shang M, Wang L, Xu L, Wong W, Yang W (2018). Packaging BiVO4 nanoparticles in ZnO microbelts for efficient photoelectrochemical hydrogen production. Electrochimica Acta, 283: 497–508

    Article  CAS  Google Scholar 

  • Huang J, Zhang H (2020). Redox reactions of iron and manganese oxides in complex systems. Frontiers of Environmental Science & Engineering, 14(5): 76

    Article  CAS  Google Scholar 

  • Jung H, Taillefert M, Sun J, Wang Q, Borkiewicz O J, Liu P, Yang L, Chen S, Chen H, Tang Y (2020). Redox cycling driven transformation of layered manganese oxides to tunnel structures. Journal of the American Chemical Society, 142(5): 2506–2513

    Article  CAS  Google Scholar 

  • Koblížek M, Béjà O, Bidigare R R, Christensen S, Benitez-Nelson B, Vetriani C, Kolber M K, Falkowski P G, Kolber Z S (2003). Isolation and characterization of Erythrobacter sp. strains from the upper ocean. Archives of Microbiology, 180(5): 327–338

    Article  Google Scholar 

  • Kumar A, Ghate V, Kim M J, Zhou W, Khoo G H, Yuk H G (2016). Antibacterial efficacy of 405, 460 and 520 nm light emitting diodes on Lactobacillus plantarum, Staphylococcus aureus and Vibrio parahaemolyticus. Journal of Applied Microbiology, 120(1): 49–56

    Article  CAS  Google Scholar 

  • Learman D R, Voelker B M, Madden A S, Hansel C M (2013). Constraints on superoxide mediated formation of manganese oxides. Frontiers in Microbiology, 4: 262

    Article  Google Scholar 

  • Learman D R, Voelker B M, Vazquez-Rodriguez A I, Hansel C M (2011). Formation of manganese oxides by bacterially generated superoxide. Nature Geoscience, 4(2): 95–98

    Article  CAS  Google Scholar 

  • Li Y, Chen L, Tian X, Lin L, Ding R, Yan W, Zhao F (2021). Functional role of mixed-culture microbe in photocatalysis coupled with biodegradation: Total organic carbon removal of ciprofloxacin. Science of the Total Environment, 784: 147049

    Article  CAS  Google Scholar 

  • Morris J J, Rose A L, Lu Z (2022). Reactive oxygen species in the world ocean and their impacts on marine ecosystems. Redox Biology, 52: 102285

    Article  CAS  Google Scholar 

  • Murray K J, Webb S M, Bargar J R, Tebo B M (2007). Indirect oxidation of Co(II) in the presence of the marine Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1. Applied and Environmental Microbiology, 73(21): 6905–6909

    Article  CAS  Google Scholar 

  • Nakama K, Medina M, Lien A, Ruggieri J, Collins K, Johnson H A (2014). Heterologous expression and characterization of the manganese-oxidizing protein from Erythrobacter sp. strain SD21. Applied and Environmental Microbiology, 80(21): 6837–6842

    Article  Google Scholar 

  • Nealson K H (2006). Volume 5: Proteobacteria: Alpha and Beta Subclasses. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K H, Stackebrandt E, editors. The Prokaryotes. New York: Springer, 222–231

    Chapter  Google Scholar 

  • Nesbitt H W, Banerjee D (1998). Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. American Mineralogist, 83(3–4): 305–315

    Article  CAS  Google Scholar 

  • Nico P S, Anastasio C, Zasoski R J (2002). Rapid photo-oxidation of Mn(II) mediated by humic substances. Geochimica et Cosmochimica Acta, 66(23): 4047–4056

    Article  CAS  Google Scholar 

  • Palermo C, Dittrich M (2016). Evidence for the biogenic origin of manganese-enriched layers in Lake Superior sediments. Environmental Microbiology Reports, 8(2): 179–186

    Article  CAS  Google Scholar 

  • Queiroz P S, Ruas F A D, Barboza N R, de Castro Borges W, Guerra-Sá R (2018). Alterations in the proteomic composition of Serratia marcescens in response to manganese (II). BMC Biotechnology, 18(1): 83

    Article  CAS  Google Scholar 

  • Ramadoss G, Suriyaraj S P, Sivaramakrishnan R, Pugazhendhi A, Rajendran S (2021). Mesoporous ferromagnetic manganese ferrite nanoparticles for enhanced visible light mineralization of azoic dye into nontoxic by-products. Science of the Total Environment, 765: 142707

    Article  CAS  Google Scholar 

  • Richardson L L, Aguilar C, Nealson K H (1988). Manganese oxidation in pH and O2 microenvironments produced by phytoplankton. Limnology and Oceanography, 33(3): 352–363

    Article  CAS  Google Scholar 

  • Song Y, Jiang J, Ma J, Zhou Y, von Gunten U (2019). Enhanced transformation of sulfonamide antibiotics by manganese(IV) oxide in the presence of model humic constituents. Water Research, 153: 200–207

    Article  CAS  Google Scholar 

  • Shi Y, Dai Y, Liu Z, Nie X, Zhao S, Zhang C, Jia H (2020). Light-induced variation in environmentally persistent free radicals and the generation of reactive radical species in humic substances. Frontiers of Environmental Science & Engineering, 14(6): 106

    Article  CAS  Google Scholar 

  • Sutherland K M, Coe A, Gast R J, Plummer S, Suffridge C P, Diaz J M, Bowman J S, Wankel S D, Hansel C M (2019). Extracellular superoxide production by key microbes in the global ocean. Limnology and Oceanography, 64(6): 2679–2693

    Article  CAS  Google Scholar 

  • Sutherland K M, Wankel S D, Hansel C M (2020). Dark biological superoxide production as a significant flux and sink of marine dissolved oxygen. Proceedings of the National Academy of Sciences of the United States of America, 117(7): 3433–3439

    Article  CAS  Google Scholar 

  • Tardu M, Bulut S, Kavakli I H (2017). MerR and ChrR mediate blue light induced photo-oxidative stress response at the transcriptional level in Vibrio cholerae. Scientific Reports, 7(1): 40817

    Article  CAS  Google Scholar 

  • Tebo B M, Bargar J R, Clement B G, Dick G J, Murray K J, Parker D, Verity R, Webb S M (2004). Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetary Sciences, 32(1): 287–328

    Article  CAS  Google Scholar 

  • Tebo B M, Johnson H A, McCarthy J K, Templeton A S (2005). Geomicrobiology of manganese(II) oxidation. Trends in Microbiology, 13(9): 421–428

    Article  CAS  Google Scholar 

  • Tournassat C, Charlet L, Bosbach D, Manceau A (2002). Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environmental Science & Technology, 36(3): 493–500

    Article  CAS  Google Scholar 

  • Wu L, Zhu G, Zhang X, Si Y (2020). Silver nanoparticles inhibit denitrification by altering the viability and metabolic activity of Pseudomonas stutzeri. Science of the Total Environment, 706: 135711

    Article  CAS  Google Scholar 

  • Xia W, Chen R, Li Y, Gao P, Li C, Jin T, Ma J, Ma T (2021). Photo-driven heterogeneous microbial consortium reducing CO2 to hydrocarbons fuel. Journal of Cleaner Production, 326: 129397

    Article  CAS  Google Scholar 

  • Xu J, Zhao M, Pei L, Liu X, Wei L, Li A, Mei Y, Xu Q (2020). Effects of heavy metal mixture exposure on hematological and biomedical parameters mediated by oxidative stress. Science of the Total Environment, 705: 134865

    Article  CAS  Google Scholar 

  • Xu X, Li Y, Li Y, Lu A, Qiao R, Liu K, Ding H, Wang C (2019). Characteristics of desert varnish from nanometer to micrometer scale: a photo-oxidation model on its formation. Chemical Geology, 522:55–70

    Article  CAS  Google Scholar 

  • Yang F, Zheng Y, Tian X, Liu Y, Li J, Shao Z, Zhao F (2021). Redox cycling of manganese by Bacillus horikoshii biET1 via oxygen switch. Electrochimica Acta, 375: 137963

    Article  CAS  Google Scholar 

  • Yang G, Ni W, Wu K, Wang H, Yang B E, Jia X, Jin R (2013). The effect of Cu(II) stress on the activity, performance and recovery on the Anaerobic Ammonium-Oxidizing (Anammox) process. Chemical Engineering Journal, 226: 39–45

    Article  CAS  Google Scholar 

  • Yang X, Peng Q, Liu L, Tan W, Qiu G, Liu C, Dang Z (2020). Synergistic adsorption of Cd(II) and As(V) on birnessite under electrochemical control. Chemosphere, 247: 125822

    Article  CAS  Google Scholar 

  • Zhang T, Liu L, Tan W, Suib S L, Qiu G, Liu F (2018). Photochemical formation and transformation of birnessite: effects of cations on micromorphology and crystal structure. Environmental Science & Technology, 52(12): 6864–6871

    Article  CAS  Google Scholar 

  • Zhao H, Wang Y, Liu Y, Yin K, Wang D, Li B, Yu H, Xing M (2021). ROS-induced hepatotoxicity under cypermethrin: involvement of the crosstalk between Nrf2/Keap1 and NF-kappaB/ikappaB-alpha pathways regulated by proteasome. Environmental Science & Technology, 55(9): 6171–6183

    Article  CAS  Google Scholar 

  • Zheng Y, Kappler A, Xiao Y, Yang F, Mahadeva G D, Zhao F (2019). Redox-active humics support interspecies syntrophy and shift microbial community. Science China Technological Sciences, 62(10): 1695–1702

    Article  Google Scholar 

  • Zhou H, Fu C (2020). Manganese-oxidizing microbes and biogenic manganese oxides: characterization, Mn(II) oxidation mechanism and environmental relevance. Reviews in Environmental Science and Biotechnology, 19(3): 489–507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 42021005 and 22025603).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhao.

Additional information

Highlights

• Term of manganese-oxidizing microorganisms should be reconsidered.

• Visible light induces heterotrophic bacteria to produce superoxide.

• Heterotrophic bacteria oxidize Mn(II) ions with a fast oxidation rate.

• Superoxide oxidizing Mn(II) ions is an unintended side reaction of bacteria.

• Superoxide is an important oxidation force of Mn(II) in the environment.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, F., Li, J., Wang, H. et al. Visible light induces bacteria to produce superoxide for manganese oxidation. Front. Environ. Sci. Eng. 17, 19 (2023). https://doi.org/10.1007/s11783-023-1619-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1619-y

Keywords

Navigation