Skip to main content
Log in

V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Research on the microplastics (MPs) is developing towards smaller size, but corresponding methods for the rapid and accurate detection of microplastics, especially nanoplastics still present challenge. In this work, a novel surface and volume enhanced Raman spectroscopy substrate was developed for the rapid detection of microplastic particles below 5 μm. The gold nanoparticles (NPs) were deposited onto the surface and into the V-shaped nanopores of anodized aluminum oxide (AAO) through magnetron sputtering or ion sputtering, and then AuNPs@V-shaped AAO SERS substrate was obtained and studied for microplastic detection. SERS performance of AuNPs@V-shaped AAO SERS substrate was evaluated through the detection of polystyrene and polymethyl methacrylate microspheres. Results indicated that individual polystyrene sphere with a diameter of 1 μm can be well detected on AuNPs@V-shaped AAO SERS substrate, and the maximum enhancement factor (EF) can reach 20. In addition, microplastics in ambient atmospheric samples were collected and tested to verify the effectiveness of the AuNPs@V-shaped AAO SERS substrate in the real environment. This study provides a rapid, economic and simple method for detecting and identifying microplastics with small size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anema J R, Brolo A G, Felten A, Bittencourt C (2010). Surface-enhanced Raman scattering from polystyrene on gold clusters. Journal of Raman Spectroscopy, 41(7): 745–751

    Article  CAS  Google Scholar 

  • Araujo C F, Nolasco M M, Ribeiro A M P, Ribeiro-Claro P J A (2018). Identification of microplastics using Raman spectroscopy: Latest developments and future prospects. Water Research, 142: 426–440

    Article  CAS  Google Scholar 

  • Bergmann M, Wirzberger V, Krumpen T, Lorenz C, Primpke S, Tekman M B, Gerdts G (2017). High quantities of microplastic in arctic deep-sea sediments from the HAUSGARTEN observatory. Environmental Science & Technology, 51(19): 11000–11010

    Article  CAS  Google Scholar 

  • Catarino A I, Macchia V, Sanderson W G, Thompson R C, Henry T B (2018). Low levels of microplastics (MP) in wild mussels indicate that MP ingestion by humans is minimal compared to exposure via household fibres fallout during a meal. Environmental Pollution, 237: 675–684

    Article  CAS  Google Scholar 

  • Chen G, Feng Q, Wang J (2020). Mini-review of microplastics in the atmosphere and their risks to humans. Science of the Total Environment, 703: 135504

    Article  CAS  Google Scholar 

  • Foulon V, Le Roux F, Lambert C, Huvet A, Soudant P, Paul-Pont I (2016). Colonization of polystyrene microparticles by vibrio crassostreae: Light and electron microscopic investigation. Environmental Science & Technology, 50(20): 10988–10996

    Article  CAS  Google Scholar 

  • Fu Y, Kuppe C, Valev V K, Fu H, Zhang L, Chen J (2017). Surface-enhanced Raman spectroscopy: A facile and rapid method for the chemical component study of individual atmospheric aerosol. Environmental Science & Technology, 51(11): 6260–6267

    Article  CAS  Google Scholar 

  • He S, Xie W, Fang S, Huang X, Zhou D, Zhang Z, Du J, Du C, Wang D (2019). Silver films coated inverted cone-shaped nanopore array anodic aluminum oxide membranes for SERS analysis of trace molecular orientation. Applied Surface Science, 488: 707–713

    Article  CAS  Google Scholar 

  • Heller E J, Yang Y, Kocia L, Chen W, Fang S, Borunda M, Kaxiras E (2016). Theory of graphene raman scattering. ACS Nano, 10(2): 2803–2818

    Article  CAS  Google Scholar 

  • Hendrickson E, Minor E C, Schreiner K (2018). Microplastic abundance and composition in western lake superior as determined via microscopy, Pyr-GC/MS, and FTIR. Environmental Science & Technology, 52(4): 1787–1796

    Article  CAS  Google Scholar 

  • Huang D, Tao J, Cheng M, Deng R, Chen S, Yin L, Li R (2021). Microplastics and nanoplastics in the environment: Macroscopic transport and effects on creatures. Journal of Hazardous Materials, 407: 124399

    Article  CAS  Google Scholar 

  • Koelmans A A, Bakir A, Burton G A, Janssen C R (2016). Microplastic as a vector for chemicals in the aquatic environment: Critical review and Model-Supported reinterpretation of empirical studies. Environmental Science & Technology, 50(7): 3315–3326

    Article  CAS  Google Scholar 

  • Koelmans A A, Mohamed Nor N H, Hermsen E, Kooi M, Mintenig S M, De France J (2019). Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Research, 155: 410–422

    Article  CAS  Google Scholar 

  • Langer J, Jimenez de Aberasturi D, Aizpurua J, Alvarez-Puebla R A, Auguié B, Baumberg J J, Bazan G C, Bell S E J, Boisen A, Brolo A G, et al. (2020). Present and future of surface-enhanced Raman scattering. ACS Nano, 14(1): 28–117

    Article  CAS  Google Scholar 

  • Law K L, Thompson R C (2014). Microplastics in the seas. Science, 345(6193): 144–145

    Article  CAS  Google Scholar 

  • Lê Q T, Ly N H, Kim M K, Lim S H, Son S J, Zoh K D, Joo S W (2021). Nanostructured Raman substrates for the sensitive detection of submicrometer-sized plastic pollutants in water. Journal of Hazardous Materials, 402: 123499

    Article  Google Scholar 

  • Liu K, Wu T, Wang X, Song Z, Zong C, Wei N, Li D (2019). Consistent transport of terrestrial microplastics to the ocean through atmosphere. Environmental Science & Technology, 53(18): 10612–10619

    Article  CAS  Google Scholar 

  • Lv L, He L, Jiang S, Chen J, Zhou C, Qu J, Lu Y, Hong P, Sun S, Li C (2020). In situ surface-enhanced Raman spectroscopy for detecting microplastics and nanoplastics in aquatic environments. Science of the Total Environment, 728: 138449

    Article  CAS  Google Scholar 

  • Mohamed Nor N H, Kooi M, Diepens N J, Koelmans A A (2021). Lifetime accumulation of microplastic in children and adults. Environmental Science & Technology, 55(8): 5084–5096

    Article  CAS  Google Scholar 

  • Nagaura T, Takeuchi F, Inoue S (2008). Fabrication and structural control of anodic alumina films with inverted cone porous structure using multi-step anodizing. Electrochimica Acta, 53(5): 2109–2114

    Article  CAS  Google Scholar 

  • Parker J, Feldman D, Ashkin M (1967). Raman scattering by silicon and germanium. Physical Review, 155(3): 712–714

    Article  CAS  Google Scholar 

  • Ragusa A, Svelato A, Santacroce C, Catalano P, Notarstefano V, Carnevali O, Papa F, Rongioletti M C A, Baiocco F, Draghi S, D’Amore E, Rinaldo D, Matta M, Giorgini E (2021). Plasticenta: First evidence of microplastics in human placenta. Environment International, 146: 106274

    Article  CAS  Google Scholar 

  • Rillig M C, Lehmann A (2020). Microplastic in terrestrial ecosystems. Science, 368(6498): 1430–1431

    Article  CAS  Google Scholar 

  • Schwabl P, Köppel S, Königshofer P, Bucsics T, Trauner M, Reiberger T, Liebmann B (2019). Detection of various microplastics in human stool: A prospective case series. Annals of Internal Medicine, 7(171): 453–457

    Article  Google Scholar 

  • Seeley M E, Song B, Passie R, Hale R C (2020). Microplastics affect sedimentary microbial communities and nitrogen cycling. Nature Communications, 11(1): 2372

    Article  CAS  Google Scholar 

  • Shi G, Wang M, Zhu Y, Yan X, Pan S, Zhang A (2019). Nanoflower-like Ag/AAO SERS platform with quasi-photonic crystal nanostructure for efficient detection of goat serum. Current Applied Physics, 19(11): 1276–1285

    Article  Google Scholar 

  • Tekman M B, Wekerle C, Lorenz C, Primpke S, Hasemann C, Gerdts G, Bergmann M (2020). Tying up loose ends of microplastic pollution in the arctic: Distribution from the sea surface through the water column to deep-sea sediments at the HAUSGARTEN observatory. Environmental Science & Technology, 54(7): 4079–4090

    Article  CAS  Google Scholar 

  • Thompson R C, Olsen Y, Mitchell R P, Davis A, Rowland S J, John A W, McGonigle D, Russell A E (2004). Lost at sea: where is all the plastic?. Science, 304(5672): 838

    Article  CAS  Google Scholar 

  • Wang C, Zhao J, Xing B (2021). Environmental source, fate, and toxicity of microplastics. Journal of Hazardous Materials, 407: 124357

    Article  CAS  Google Scholar 

  • Wang L, Zhang J, Hou S, Sun H (2017). A simple method for quantifying polycarbonate and polyethylene terephthalate microplastics in environmental samples by liquid chromatography-tandem mass spectrometry. Environmental Science & Technology Letters, 4(12): 530–534

    Article  CAS  Google Scholar 

  • Wang X, Huang S, Hu S, Yan S, Ren B (2020). Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nature Reviews Physics, 2(5): 253–271

    Article  Google Scholar 

  • Xu G, Cheng H, Jones R, Feng Y, Gong K, Li K, Fang X, Tahir M A, Valev V K, Zhang L (2020). Surface-enhanced Raman spectroscopy facilitates the detection of microplastics < 1 µm in the environment. Environmental Science & Technology, 54(24): 15594–15603

    Article  CAS  Google Scholar 

  • Zhang Q, Xu E G, Li J, Chen Q, Ma L, Zeng E Y, Shi H (2020a). A review of microplastics in table salt, drinking water, and air: Direct human exposure. Environmental Science & Technology, 54(7): 3740–3751

    Article  CAS  Google Scholar 

  • Zhang Y, Pu S, Lv X, Gao Y, Ge L (2020b). Global trends and prospects in microplastics research: A bibliometric analysis. Journal of Hazardous Materials, 400: 123110

    Article  CAS  Google Scholar 

  • Zhao J, Lin J, Li X, Zhao G, Zhang W (2015). Silver nanoparticles deposited inverse opal film as a highly active and uniform SERS substrate. Applied Surface Science, 347: 514–519

    Article  CAS  Google Scholar 

  • Zhu X, Huang W, Fang M, Liao Z, Wang Y, Xu L, Mu Q, Shi C, Lu C, Deng H, Dahlgren R, Shang X (2021). Airborne microplastic concentrations in five megacities of northern and southeast China. Environmental Science & Technology, 55(19): 12871–12881

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (Nos. 22176036, 21976030 and 22006020), the Natural Science Foundation of Shanghai (China) (No. 19ZR1471200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwu Zhang.

Additional information

Highlights

• V-shaped substrate was obtained for SERS analysis of microplastics (diameter ≈ 1 μm).

• Enhancement factor of V-shaped substrate can reach 20 in microplastics detection.

• V-shaped nanopore array can bring additional volume enhancement.

• V-shaped substrate was more economic in application compared to Klarite substrate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Xu, G., Ruan, X. et al. V-shaped substrate for surface and volume enhanced Raman spectroscopic analysis of microplastics. Front. Environ. Sci. Eng. 16, 143 (2022). https://doi.org/10.1007/s11783-022-1578-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-022-1578-8

Keywords

Navigation