Skip to main content
Log in

Acid Orange 7 degradation using methane as the sole carbon source and electron donor

  • Research Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

Azo dyes are widely applied in the textile industry but are not entirely consumed during the dyeing process and can thus be discharged to the environment in wastewater. However, azo dyes can be degraded using various electron donors, and in this paper, Acid Orange 7 (AO7) degradation performance is investigated using methane (CH4) as the sole electron donor. Methane has multiple sources and is readily available and inexpensive. Experiments using 13C-labeled isotopes showed that AO7 degradation was coupled with anaerobic oxidation of methane (AOM) and, subsequently, affected by the initial concentrations of AO7. Higher concentrations of AO7 could inhibit the activity of microorganisms, which was confirmed by the long-term performance of AO7 degradation, with maximum removal rates of 8.94 mg/(L·d) in a batch reactor and 280 mg/(L·d) in a hollow fiber membrane bioreactor (HfMBR). High-throughput sequencing using 16S rRNA genes showed that Candidatus Methanoperedens, affiliated to ANME-2d, dominated the microbial community in the batch reactor and HfMBR. Additionally, the relative abundance of Proteobacteria bacteria (Phenylobacterium, Pseudomonas, and Geothermobacter) improved after AO7 degradation. This outcome suggested that ANME-2d alone, or acting synergistically with partner bacteria, played a key role in the process of AO7 degradation coupled with AOM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai Y N, Wang X N, Wu J, Lu Y Z, Fu L, Zhang F, Lau T C, Zeng R J (2019). Humic substances as electron acceptors for anaerobic oxidation of methane driven by ANME-2d. Water Research, 164: 114935

    Article  CAS  Google Scholar 

  • Bai Y N, Wang X N, Zhang F, Wu J, Zhang W, Lu Y Z, Fu L, Lau T C, Zeng R J (2020). High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. Journal of Hazardous Materials, 388: 121753

    Article  CAS  Google Scholar 

  • Brás R, Gomes A, Ferra M I, Pinheiro H M, Goncalves I C (2005). Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor. Journal of Biotechnology, 115(1): 57–66

    Article  CAS  Google Scholar 

  • Cai C, Shi Y, Guo J, Tyson G W, Hu S, Yuan Z (2019). Acetate production from anaerobic oxidation of methane via intracellular storage compounds. Environmental Science & Technology, 53(13): 7371–7379

    Article  CAS  Google Scholar 

  • Chen H, Zhao L, Hu S H, Yuan Z G, Guo J H (2018). High-Rate production of short-chain fatty acids from methane in a mixed-culture membrane biofilm reactor. Environmental Science & Technology Letters, 5(11): 662–667

    Article  CAS  Google Scholar 

  • Dafale N, Agrawal L, Kapley A, Meshram S, Purohit H, Wate S (2010). Selection of indicator bacteria based on screening of 16S rDNA metagenomic library from a two-stage anoxic-oxic bioreactor system degrading azo dyes. Bioresource Technology, 101(2): 476–484

    Article  CAS  Google Scholar 

  • Dai R, Chen X, Luo Y, Ma P, Ni S, Xiang X, Li G (2016). Inhibitory effect and mechanism of azo dyes on anaerobic methanogenic wastewater treatment: Can redox mediator remediate the inhibition? Water Research, 104: 408–117

    Article  CAS  Google Scholar 

  • Ding J, Lu Y Z, Fu L, Ding Z W, Mu Y, Cheng S H, Zeng R J (2017). Decoupling of DAMO archaea from DAMO bacteria in a methane-driven microbial fuel cell. Water Research, 110: 112–119

    Article  CAS  Google Scholar 

  • Ettwig K F, Zhu B, Speth D, Keltjens J T, Jetten M S M, Kartal B (2016). Archaea catalyze iron-dependent anaerobic oxidation of methane. Proceedings of the National Academy of Sciences of the United States of America, 113(45): 12792–12796

    Article  CAS  Google Scholar 

  • Fernando E, Keshavarz T, Kyazze G (2014). Complete degradation of the azo dye Acid Orange-7 and bioelectricity generation in an integrated microbial fuel cell, aerobic two-stage bioreactor system in continuous flow mode at ambient temperature. Bioresource Technology, 156: 155–162

    Article  CAS  Google Scholar 

  • Fu L, Bai Y N, Lu Y Z, Ding J, Zhou D, Zeng R J (2019). Degradation of organic pollutants by anaerobic methane-oxidizing microorganisms using methyl orange as example. Journal of Hazardous Materials, 364: 264–271

    Article  CAS  Google Scholar 

  • Fu L, Li S W, Ding Z W, Ding J, Lu Y Z, Zeng R J (2016). Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II). Water Research, 88: 808–815

    Article  CAS  Google Scholar 

  • Georgiou D, Aivasidis A (2006). Decoloration of textile wastewater by means of a fluidized-bed loop reactor and immobilized anaerobic bacteria. Journal of Hazardous Materials, 135(1–3): 372–377

    Article  CAS  Google Scholar 

  • Gonçalves I C, Lopes L, Pinheiro H M, Ferra M I (2009). Behaviour of different anaerobic populations on the biodegradation of textile chemicals. Journal of Hazardous Materials, 172(2–3): 1236–1243

    Article  CAS  Google Scholar 

  • Haroon M F, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, Yuan Z, Tyson G W (2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464): 567–570

    Article  CAS  Google Scholar 

  • Ilić Đurđić K, Ostafe R, Prodanović O, Đurđević Đelmaš A, Popović N, Fischer R, Schillberg S, Prodanović R (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science & Engineering, 15(2): 19

    Article  CAS  Google Scholar 

  • Işik M, Sponza D T (2004). Decolorization of azo dyes under batch anaerobic and sequential anaerobic aerobic conditions. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 39(4): 1107–1127

    Article  CAS  Google Scholar 

  • Kalyani D C, Patil P S, Jadhav J P, Govindwar S P (2008). Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp. SUK1. Bioresource Technology, 99(11): 4635–4641

    Article  CAS  Google Scholar 

  • Kapdan I K, Tekol M, Sengul F (2003). Decolorization of simulated textile wastewater in an anaerobic-aerobic sequential treatment system. Process Biochemistry, 38(7): 1031–1037

    Article  CAS  Google Scholar 

  • Knittel K, Boetius A (2009). Anaerobic oxidation of methane: progress with an unknown process. Annual Review of Microbiology, 63(1): 311–334

    Article  CAS  Google Scholar 

  • Liu Y, Zhang Y, Quan X, Zhang J, Zhao H, Chen S (2011). Effects of an electric field and zero valent iron on anaerobic treatment of azo dye wastewater and microbial community structures. Bioresource Technology, 102(3): 2578–2584

    Article  CAS  Google Scholar 

  • Liu Y N, Zhang F, Li J, Li D B, Liu D F, Li W W, Yu H Q (2017). Exclusive extracellular bioreduction of methyl orange by azo reductase-free Geobacter sulfurreducens. Environmental Science & Technology, 51(15): 8616–8623

    Article  CAS  Google Scholar 

  • Lu Y Z, Ding Z W, Ding J, Fu L, Zeng R J (2015). Design and evaluation of universal 16S rRNA gene primers for high-throughput sequencing to simultaneously detect DAMO microbes and anammox bacteria. Water Research, 87: 385–394

    Article  CAS  Google Scholar 

  • Lu Y Z, Fu L, Ding J, Ding Z W, Li N, Zeng R J (2016). Cr(VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water Research, 102: 445–452

    Article  CAS  Google Scholar 

  • Luo J H, Chen H, Hu S, Cai C, Yuan Z, Guo J (2018). Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm. Environmental Science & Technology, 52(7): 4006–4012

    Article  CAS  Google Scholar 

  • Luo J H, Wu M, Liu J, Qian G, Yuan Z, Guo J (2019). Microbial chromate reduction coupled with anaerobic oxidation of methane in a membrane biofilm reactor. Environment International, 130: 104926

    Article  CAS  Google Scholar 

  • Luo Y H, Chen R, Wen L L, Meng F, Zhang Y, Lai C Y, Rittmann B E, Zhao H P, Zheng P (2015). Complete perchlorate reduction using methane as the sole electron donor and carbon source. Environmental Science & Technology, 49(4): 2341–2349

    Article  CAS  Google Scholar 

  • Mahmood S, Khalid A, Arshad M, Mahmood T, Crowley D E (2016). Detoxification of azo dyes by bacterial oxidoreductase enzymes. Critical Reviews in Biotechnology, 36(4): 639–651

    Article  CAS  Google Scholar 

  • Manu B, Chaudhari S (2002). Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresource Technology, 82(3): 225–231

    Article  CAS  Google Scholar 

  • Méndez-Paz D, Omil F, Lema J M (2005a). Anaerobic treatment of azo dye Acid Orange 7 under fed-batch and continuous conditions. Water Research, 39(5): 771–778

    Article  CAS  Google Scholar 

  • Méndez-Paz D, Omil F, Lema J M (2005b). Anaerobic treatment of azo dye Acid Orange 7 under batch conditions. Water Research, 36(2): 264–272

    Google Scholar 

  • Nie W B, Ding J, Xie G J, Tan X, Lu Y, Peng L, Liu B F, Xing D F, Yuan Z, Ren N (2021). Simultaneous nitrate and sulfate dependent anaerobic oxidation of methane linking carbon, nitrogen and sulfur cycles. Water Research, 194: 116928

    Article  CAS  Google Scholar 

  • Oon Y S, Ong S A, Ho L N, Wong Y S, Oon Y L, Lehl H K, Thung W E, Nordin N (2018). Disclosing the synergistic mechanisms of azo dye degradation and bioelectricity generation in a microbial fuel cell. Chemical Engineering Journal, 344: 236–245

    Article  CAS  Google Scholar 

  • Raghoebarsing A A, Pol A, Van De Pas-Schoonen K T, Smolders A J, Ettwig K F, Rijpstra W I, Schouten S, Damste J S, Op Den Camp H J, Jetten M S, Strous M (2006). A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440(7086): 918–921

    Article  CAS  Google Scholar 

  • Ren Z J (2017). Microbial fuel cells: Running on gas. Nature Energy, 2(6): 17093

    Article  CAS  Google Scholar 

  • Saratale R G, Saratale G D, Chang J S, Govindwar S P (2011). Bacterial decolorization and degradation of azo dyes: A review. Journal of the Taiwan Institute of Chemical Engineers, 42(1): 138–157

    Article  CAS  Google Scholar 

  • Timmers P H, Welte C U, Koehorst J J, Plugge C M, Jetten M S, Stams A J (2017). Reverse Methanogenesis and Respiration in Methanotrophic Archaea. Archaea (Vancouver, B.C.), 2017: 1654237

    Google Scholar 

  • van Der Zee F P, Villaverde S (2005). Combined anaerobic-aerobic treatment of azo dyes: A short review of bioreactor studies. Water Research, 39(8): 1425–1440

    Article  CAS  Google Scholar 

  • Wallenius A J, Dalcin Martins P, Slomp C P, Jetten M S M (2021). Anthropogenic and environmental constraints on the microbial methane cycle in coastal sediments. Frontiers in Microbiology, 12: 631621

    Article  Google Scholar 

  • Wang Z, Yin Q, Gu M, He K, Wu G (2018). Enhanced azo dye Reactive Red 2 degradation in anaerobic reactors by dosing conductive material of ferroferric oxide. Journal of Hazardous Materials, 357: 226–234

    Article  CAS  Google Scholar 

  • Willetts J, Ashbolt N J (2000). Understanding anaerobic decolourisation of textile dye wastewater: Mechanism and kinetics. Water Science and Technology, 42(1–2): 409–415

    Article  CAS  Google Scholar 

  • Xu S, Wu X, Lu H (2021). Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science & Engineering, 15(6): 133

    Article  Google Scholar 

  • Yu L, Zhang X Y, Wang S, Tang Q W, Xie T, Lei N Y, Chen Y L, Qiao W C, Li W W, Lam M H W (2015). Microbial community structure associated with treatment of azo dye in a start-up anaerobic sequenced batch reactor. Journal of the Taiwan Institute of Chemical Engineers, 54: 118–124

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51178444 and 51878175), the Program for Innovative Research Team in Science and Technology in Fujian Province University (No. IRTSTFJ) and the Startup Foundation for Introducing Talent of NUIST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond Jianxiong Zeng.

Additional information

Highlights

• AO7 degradation was coupled with anaerobic methane oxidation.

• Higher concentration of AO7 inhibited the degradation.

• The maximum removal rate of AO7 reached 280 mg/(L·d) in HfMBR.

• ANME-2d dominated the microbial community in both batch reactor and HfMBR.

• ANME-2d alone or synergistic with the partner bacteria played a significant role.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Wang, X., Zhang, F. et al. Acid Orange 7 degradation using methane as the sole carbon source and electron donor. Front. Environ. Sci. Eng. 16, 34 (2022). https://doi.org/10.1007/s11783-021-1468-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-021-1468-5

Keywords

Navigation